{"title":"与Dedekind zeta函数相关的Stieltjes常数的符号","authors":"Sumaia Saad Eddin","doi":"10.3792/pjaa.94.93","DOIUrl":null,"url":null,"abstract":"The Stieltjes constants $\\gamma_n(K)$ of a number field $K$ are the coefficients of the Laurent expansion of the Dedekind zeta function $\\zeta_K(s)$ at its pole $s=1$. In this paper, we establish a similar expression of $\\gamma_n(K)$ as Stieltjes obtained in 1885 for $\\gamma_n(\\mathbb Q)$. We also study the signs of $\\gamma_n(K)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The signs of the Stieltjes constants associated with the Dedekind zeta function\",\"authors\":\"Sumaia Saad Eddin\",\"doi\":\"10.3792/pjaa.94.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Stieltjes constants $\\\\gamma_n(K)$ of a number field $K$ are the coefficients of the Laurent expansion of the Dedekind zeta function $\\\\zeta_K(s)$ at its pole $s=1$. In this paper, we establish a similar expression of $\\\\gamma_n(K)$ as Stieltjes obtained in 1885 for $\\\\gamma_n(\\\\mathbb Q)$. We also study the signs of $\\\\gamma_n(K)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.94.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.94.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The signs of the Stieltjes constants associated with the Dedekind zeta function
The Stieltjes constants $\gamma_n(K)$ of a number field $K$ are the coefficients of the Laurent expansion of the Dedekind zeta function $\zeta_K(s)$ at its pole $s=1$. In this paper, we establish a similar expression of $\gamma_n(K)$ as Stieltjes obtained in 1885 for $\gamma_n(\mathbb Q)$. We also study the signs of $\gamma_n(K)$.