基于电子鼻的传感器阵列检测肉丸中硼砂的人工神经网络

Anak Agung, Surya Pradhana, S. D. Astuti, Fauziah, Perwira Annissa Dyah, Permatasari, Riskia Agustina, A. K. Yaqubi, H. Setyawati, Cendra Devayana Putra
{"title":"基于电子鼻的传感器阵列检测肉丸中硼砂的人工神经网络","authors":"Anak Agung, Surya Pradhana, S. D. Astuti, Fauziah, Perwira Annissa Dyah, Permatasari, Riskia Agustina, A. K. Yaqubi, H. Setyawati, Cendra Devayana Putra","doi":"10.1155/2023/8847929","DOIUrl":null,"url":null,"abstract":"The categorization of odors utilizing gas sensor arrays with various meatball borax concentrations has been studied. The samples included meatballs with a borax content of 0.05%, 0.10%, 0.15%, 0.20%, and 0.25% (%mm) and meatballs without any borax. Six TGS gas sensors with a baseline of 10 seconds, a detecting period of 120 seconds, and a purging period of 250 seconds make up the gas sensor array used in this work. Artificial neural networks (ANNs) and principal component analysis (PCA), which are beneficial for feature extraction and classification, are used to handle the collected data based on machine learning approaches. Two models were produced by the data analysis: model 1, which only used the PCA approach, and model 2, which only used the ANN methodology. 90.33% is the total variance value of PC from model 1. In addition, the multilayer perceptron artificial neural network (ANN-MLP) technique for model 2 yielded accuracy values of 95%.","PeriodicalId":23352,"journal":{"name":"Turkish J. Electr. Eng. Comput. Sci.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensor Array System Based on Electronic Nose to Detect Borax in Meatballs with Artificial Neural Network\",\"authors\":\"Anak Agung, Surya Pradhana, S. D. Astuti, Fauziah, Perwira Annissa Dyah, Permatasari, Riskia Agustina, A. K. Yaqubi, H. Setyawati, Cendra Devayana Putra\",\"doi\":\"10.1155/2023/8847929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The categorization of odors utilizing gas sensor arrays with various meatball borax concentrations has been studied. The samples included meatballs with a borax content of 0.05%, 0.10%, 0.15%, 0.20%, and 0.25% (%mm) and meatballs without any borax. Six TGS gas sensors with a baseline of 10 seconds, a detecting period of 120 seconds, and a purging period of 250 seconds make up the gas sensor array used in this work. Artificial neural networks (ANNs) and principal component analysis (PCA), which are beneficial for feature extraction and classification, are used to handle the collected data based on machine learning approaches. Two models were produced by the data analysis: model 1, which only used the PCA approach, and model 2, which only used the ANN methodology. 90.33% is the total variance value of PC from model 1. In addition, the multilayer perceptron artificial neural network (ANN-MLP) technique for model 2 yielded accuracy values of 95%.\",\"PeriodicalId\":23352,\"journal\":{\"name\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8847929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish J. Electr. Eng. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8847929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用不同硼砂浓度的气体传感器阵列对气味进行了分类研究。样品包括硼砂含量分别为0.05%、0.10%、0.15%、0.20%和0.25% (%mm)的肉丸和不含硼砂的肉丸。6个TGS气体传感器,基线为10秒,检测周期为120秒,清洗周期为250秒,组成了本工作中使用的气体传感器阵列。利用有利于特征提取和分类的人工神经网络(ann)和主成分分析(PCA),基于机器学习方法对收集到的数据进行处理。通过数据分析产生了两个模型:仅使用PCA方法的模型1和仅使用ANN方法的模型2。90.33%为模型1中PC的总方差值。此外,模型2的多层感知器人工神经网络(ANN-MLP)技术的准确率值为95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensor Array System Based on Electronic Nose to Detect Borax in Meatballs with Artificial Neural Network
The categorization of odors utilizing gas sensor arrays with various meatball borax concentrations has been studied. The samples included meatballs with a borax content of 0.05%, 0.10%, 0.15%, 0.20%, and 0.25% (%mm) and meatballs without any borax. Six TGS gas sensors with a baseline of 10 seconds, a detecting period of 120 seconds, and a purging period of 250 seconds make up the gas sensor array used in this work. Artificial neural networks (ANNs) and principal component analysis (PCA), which are beneficial for feature extraction and classification, are used to handle the collected data based on machine learning approaches. Two models were produced by the data analysis: model 1, which only used the PCA approach, and model 2, which only used the ANN methodology. 90.33% is the total variance value of PC from model 1. In addition, the multilayer perceptron artificial neural network (ANN-MLP) technique for model 2 yielded accuracy values of 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信