关于AR(1)的说明——平稳过程的表征和模型拟合

IF 0.7 Q3 STATISTICS & PROBABILITY
M. Voutilainen, L. Viitasaari, Pauliina Ilmonen
{"title":"关于AR(1)的说明——平稳过程的表征和模型拟合","authors":"M. Voutilainen, L. Viitasaari, Pauliina Ilmonen","doi":"10.15559/19-VMSTA132","DOIUrl":null,"url":null,"abstract":"It was recently proved that any strictly stationary stochastic process can be viewed as an autoregressive process of order one with coloured noise. Furthermore, it was proved that, using this characterisation, one can define closed form estimators for the model parameter based on autocovariance estimators for several different lags. However, this estimation procedure may fail in some special cases. In this article we provide a detailed analysis of these special cases. In particular, we prove that these cases correspond to degenerate processes.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"123 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Note on AR(1)-characterisation of stationary processes and model fitting\",\"authors\":\"M. Voutilainen, L. Viitasaari, Pauliina Ilmonen\",\"doi\":\"10.15559/19-VMSTA132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It was recently proved that any strictly stationary stochastic process can be viewed as an autoregressive process of order one with coloured noise. Furthermore, it was proved that, using this characterisation, one can define closed form estimators for the model parameter based on autocovariance estimators for several different lags. However, this estimation procedure may fail in some special cases. In this article we provide a detailed analysis of these special cases. In particular, we prove that these cases correspond to degenerate processes.\",\"PeriodicalId\":42685,\"journal\":{\"name\":\"Modern Stochastics-Theory and Applications\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Stochastics-Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/19-VMSTA132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/19-VMSTA132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

摘要

最近证明了任何严格平稳随机过程都可以看作是带有有色噪声的一阶自回归过程。此外,还证明了利用这一特性,可以基于自协方差估计来定义模型参数的封闭形式估计。然而,这种估计过程在某些特殊情况下可能会失败。在本文中,我们将对这些特殊情况进行详细分析。特别地,我们证明了这些情况对应于简并过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on AR(1)-characterisation of stationary processes and model fitting
It was recently proved that any strictly stationary stochastic process can be viewed as an autoregressive process of order one with coloured noise. Furthermore, it was proved that, using this characterisation, one can define closed form estimators for the model parameter based on autocovariance estimators for several different lags. However, this estimation procedure may fail in some special cases. In this article we provide a detailed analysis of these special cases. In particular, we prove that these cases correspond to degenerate processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信