M. Samoudi, Z. Minuchehr, S. Harcum, F. Tabandeh, N. Omid Yeganeh, M. Khodabandeh
{"title":"糖工程干扰素的合理设计具有改进聚合状态的类似物:实验验证","authors":"M. Samoudi, Z. Minuchehr, S. Harcum, F. Tabandeh, N. Omid Yeganeh, M. Khodabandeh","doi":"10.1093/protein/gzw058","DOIUrl":null,"url":null,"abstract":"Recombinant human interferon-&bgr; (rhIFN-&bgr;) used clinically has lower efficacy than expected due to protein instabilities such as aggregation. Increasing molecular stability, glycoengineering has been used to improve clinical efficacy for a number of therapeutics; however, often labor-intensive trail-and-error approaches are used to identify additional glycosylation sites. In this study two rhIFN-&bgr; analogs with one additional glycosylation site, L6T and S75N, identified by a rational in silico approach, were characterized. These rhIFN-&bgr; analogs were synthesized in parallel with a Chinese hamster ovary (CHO) codon-optimized natural human IFN-&bgr; (Opt-IFN-&bgr;) and expressed in CHO cells using the same expression system. The molecular weights for both analogs were observed to be higher than Opt-IFN-&bgr;, consistent with hyper-glycosylation. The in vitro biological assay showed the hyper-glycosylated analogs and the Opt-IFN-&bgr; had similar activity. The aggregation studies demonstrated that both analogs had lower tendencies to aggregate compared to the Opt-IFN-&bgr;. These experimental studies validate the in silico strategy to predict suitable glycosylation sites that would be glycosylated, while maintaining biological function. Moreover, this work describes hyper-glycosylated rhIFN-&bgr; analogs with improved solubility (i.e. lower aggregation). These findings, together with the rational in silico design, will allow us to increase protein glycosylation with the goal to enhance therapeutic efficacy.","PeriodicalId":20681,"journal":{"name":"Protein Engineering, Design and Selection","volume":"18 1","pages":"23–30"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Rational design of glycoengineered interferon-&bgr; analogs with improved aggregation state: experimental validation\",\"authors\":\"M. Samoudi, Z. Minuchehr, S. Harcum, F. Tabandeh, N. Omid Yeganeh, M. Khodabandeh\",\"doi\":\"10.1093/protein/gzw058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recombinant human interferon-&bgr; (rhIFN-&bgr;) used clinically has lower efficacy than expected due to protein instabilities such as aggregation. Increasing molecular stability, glycoengineering has been used to improve clinical efficacy for a number of therapeutics; however, often labor-intensive trail-and-error approaches are used to identify additional glycosylation sites. In this study two rhIFN-&bgr; analogs with one additional glycosylation site, L6T and S75N, identified by a rational in silico approach, were characterized. These rhIFN-&bgr; analogs were synthesized in parallel with a Chinese hamster ovary (CHO) codon-optimized natural human IFN-&bgr; (Opt-IFN-&bgr;) and expressed in CHO cells using the same expression system. The molecular weights for both analogs were observed to be higher than Opt-IFN-&bgr;, consistent with hyper-glycosylation. The in vitro biological assay showed the hyper-glycosylated analogs and the Opt-IFN-&bgr; had similar activity. The aggregation studies demonstrated that both analogs had lower tendencies to aggregate compared to the Opt-IFN-&bgr;. These experimental studies validate the in silico strategy to predict suitable glycosylation sites that would be glycosylated, while maintaining biological function. Moreover, this work describes hyper-glycosylated rhIFN-&bgr; analogs with improved solubility (i.e. lower aggregation). These findings, together with the rational in silico design, will allow us to increase protein glycosylation with the goal to enhance therapeutic efficacy.\",\"PeriodicalId\":20681,\"journal\":{\"name\":\"Protein Engineering, Design and Selection\",\"volume\":\"18 1\",\"pages\":\"23–30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering, Design and Selection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzw058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering, Design and Selection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzw058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rational design of glycoengineered interferon-&bgr; analogs with improved aggregation state: experimental validation
Recombinant human interferon-&bgr; (rhIFN-&bgr;) used clinically has lower efficacy than expected due to protein instabilities such as aggregation. Increasing molecular stability, glycoengineering has been used to improve clinical efficacy for a number of therapeutics; however, often labor-intensive trail-and-error approaches are used to identify additional glycosylation sites. In this study two rhIFN-&bgr; analogs with one additional glycosylation site, L6T and S75N, identified by a rational in silico approach, were characterized. These rhIFN-&bgr; analogs were synthesized in parallel with a Chinese hamster ovary (CHO) codon-optimized natural human IFN-&bgr; (Opt-IFN-&bgr;) and expressed in CHO cells using the same expression system. The molecular weights for both analogs were observed to be higher than Opt-IFN-&bgr;, consistent with hyper-glycosylation. The in vitro biological assay showed the hyper-glycosylated analogs and the Opt-IFN-&bgr; had similar activity. The aggregation studies demonstrated that both analogs had lower tendencies to aggregate compared to the Opt-IFN-&bgr;. These experimental studies validate the in silico strategy to predict suitable glycosylation sites that would be glycosylated, while maintaining biological function. Moreover, this work describes hyper-glycosylated rhIFN-&bgr; analogs with improved solubility (i.e. lower aggregation). These findings, together with the rational in silico design, will allow us to increase protein glycosylation with the goal to enhance therapeutic efficacy.