缴费灵样本计划的修改及更换

IF 0.3 Q4 MATHEMATICS
A. Alanzi, Naser A. Alodat, Ahmad Mohammad Qazza
{"title":"缴费灵样本计划的修改及更换","authors":"A. Alanzi, Naser A. Alodat, Ahmad Mohammad Qazza","doi":"10.3844/JMSSP.2019.65.69","DOIUrl":null,"url":null,"abstract":"In this paper we have developed an alternative estimator for the Probability Proportional to Size (PPS) with replacement sampling scheme when certain characteristics under study are positively correlated with the selection probability. An analogue to the well-known superpopulation model for finite population is also suggested, using which, we compare the proposed estimator with Hansen and Hurwitz estimator. Finally, an empirical investigation of the performance of the propose estimator has also been made.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"96 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification on PPS Sample Scheme with Replacement\",\"authors\":\"A. Alanzi, Naser A. Alodat, Ahmad Mohammad Qazza\",\"doi\":\"10.3844/JMSSP.2019.65.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have developed an alternative estimator for the Probability Proportional to Size (PPS) with replacement sampling scheme when certain characteristics under study are positively correlated with the selection probability. An analogue to the well-known superpopulation model for finite population is also suggested, using which, we compare the proposed estimator with Hansen and Hurwitz estimator. Finally, an empirical investigation of the performance of the propose estimator has also been made.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/JMSSP.2019.65.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2019.65.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了一个具有替代抽样方案的概率与大小成比例(PPS)的替代估计量,当所研究的某些特征与选择概率正相关时。本文还提出了一个类似于有限种群的著名的超种群模型,并利用它与Hansen和Hurwitz估计量进行了比较。最后,对所提估计器的性能进行了实证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modification on PPS Sample Scheme with Replacement
In this paper we have developed an alternative estimator for the Probability Proportional to Size (PPS) with replacement sampling scheme when certain characteristics under study are positively correlated with the selection probability. An analogue to the well-known superpopulation model for finite population is also suggested, using which, we compare the proposed estimator with Hansen and Hurwitz estimator. Finally, an empirical investigation of the performance of the propose estimator has also been made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信