在大肠新形成的诊断中,人工智能是开发、应用和第一个结果。

К. И. Кулаев, Андрей Важенин, Д. М. Ростовцев, Яна Ким, П. П. Зайцев, А. Ю. Привалов, Андрей Валик, К. С. Зуйков, И. М. Юсупов, Инна Вадимовна Попова, Евгений Владимирович Пушкарев
{"title":"在大肠新形成的诊断中,人工智能是开发、应用和第一个结果。","authors":"К. И. Кулаев, Андрей Важенин, Д. М. Ростовцев, Яна Ким, П. П. Зайцев, А. Ю. Привалов, Андрей Валик, К. С. Зуйков, И. М. Юсупов, Инна Вадимовна Попова, Евгений Владимирович Пушкарев","doi":"10.37469/0507-3758-2023-69-2-292-299","DOIUrl":null,"url":null,"abstract":"Введение. Проблема диагностики и лечения колоректального рака является крайне актуальной проблемой. По данным Всемирной организации здравоохранения и Международного агентства по изучению рака за 2020 г., в мире ежегодно регистрируется около 1,93 млн. случаев колоректального рака. Несмотря на постоянное совершенствование эндоскопического оборудования, число случаев пропущенного рака толстой кишки после выполнения диагностической колоноскопии колеблется от 2,1 % до 5,9 %. В диагностике предраковой патологии доля таких исследований достигает 32,8 %. Причин пропуска патологии множество, одна из которых «человеческий фактор»: частота выявленной патологии зависит от квалификации и опыта врача-эндоскописта.\nЦель исследования. Оценить эффективность диагностической колоноскопии с применением системы искусственного интеллекта в детекции новообразований толстого кишечника.\nМатериалы и методы. С 2021 по 2022 гг. в ГБУЗ «Челябинский областной клинический центр онкологии и ядерной медицины» совместно с российской компанией EVA Lab (ООО «ЭВА Лаб») была разработана, апробирована и внедрена система поддержки принятия врачебных решений (СППВР) на основе алгоритмов искусственного интеллекта. Исследование включает в себя анализ материалов в отношении 944 пациентов с различной патологией толстого кишечника — 338 мужчин (41,1 %) и 556 женщин (58,9 %). Средний возраст мужчин составил 64 ± 12,9 лет, женщин 63 ± 10,2 лет. Все пациенты были разделены на две группы. Первая группа (контрольная) — ретроспективная, формировалась до внедрения в 2020 г. систем на основе искусственного интеллекта, в нее вошли 634 пациента. Вторая группа (группа исследования) — это проспективная когорта, которая начала формироваться с 2020 г. (с момента внедрения системы искусственного интеллекта) включила 310 пациентов. В обеих группах диагностические колоноскопии выполнялись одними и теми же врачами-эндоскопистами со стажем не менее 10 лет.\nРезультаты. В контрольной группе пациентов было обнаружено 358 (56,4 %) новообразований толстого кишечника, а в группе исследования — 204 (65,8 %). Наибольшая эффективность системы искусственного интеллекта достигалась при детекции новообразований до 1,0 см в диаметре. Если сравнивать частоту выявления новообразований в группе исследования и контрольной группе в категориях пациентов с размером новообразования до 0,5 см и с размерами от 0,5 до 1,0 см, то разница составит 15,7 %, т. е. в группе исследования новообразования регистрировались значимо чаще, чем в контрольной группе (р˂0,001). При размерах новообразования более 1,0 см в диаметре, существенных различий между группами контроля и исследования не обнаружено. Биопсия выполнялась на 13 % чаще в группе исследования по сравнению с контрольной группой.\nЗаключение. Система искусственного интеллекта наглядно продемонстрировала свою эффективность в детекции новообразований любых размеров; чувствительность составила 80,7 %. Вероятность обнаружения новообразований менее 1,0 см в диаметре при использовании была выше на 13,7 %, вероятность обнаружения тубулярных аденом всех размеров выше на 9,7 %.","PeriodicalId":20495,"journal":{"name":"Problems in oncology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Искусственный интеллект в диагностике новообразований толстого кишечника—разработка, внедрение технологии и первые результаты\",\"authors\":\"К. И. Кулаев, Андрей Важенин, Д. М. Ростовцев, Яна Ким, П. П. Зайцев, А. Ю. Привалов, Андрей Валик, К. С. Зуйков, И. М. Юсупов, Инна Вадимовна Попова, Евгений Владимирович Пушкарев\",\"doi\":\"10.37469/0507-3758-2023-69-2-292-299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Введение. Проблема диагностики и лечения колоректального рака является крайне актуальной проблемой. По данным Всемирной организации здравоохранения и Международного агентства по изучению рака за 2020 г., в мире ежегодно регистрируется около 1,93 млн. случаев колоректального рака. Несмотря на постоянное совершенствование эндоскопического оборудования, число случаев пропущенного рака толстой кишки после выполнения диагностической колоноскопии колеблется от 2,1 % до 5,9 %. В диагностике предраковой патологии доля таких исследований достигает 32,8 %. Причин пропуска патологии множество, одна из которых «человеческий фактор»: частота выявленной патологии зависит от квалификации и опыта врача-эндоскописта.\\nЦель исследования. Оценить эффективность диагностической колоноскопии с применением системы искусственного интеллекта в детекции новообразований толстого кишечника.\\nМатериалы и методы. С 2021 по 2022 гг. в ГБУЗ «Челябинский областной клинический центр онкологии и ядерной медицины» совместно с российской компанией EVA Lab (ООО «ЭВА Лаб») была разработана, апробирована и внедрена система поддержки принятия врачебных решений (СППВР) на основе алгоритмов искусственного интеллекта. Исследование включает в себя анализ материалов в отношении 944 пациентов с различной патологией толстого кишечника — 338 мужчин (41,1 %) и 556 женщин (58,9 %). Средний возраст мужчин составил 64 ± 12,9 лет, женщин 63 ± 10,2 лет. Все пациенты были разделены на две группы. Первая группа (контрольная) — ретроспективная, формировалась до внедрения в 2020 г. систем на основе искусственного интеллекта, в нее вошли 634 пациента. Вторая группа (группа исследования) — это проспективная когорта, которая начала формироваться с 2020 г. (с момента внедрения системы искусственного интеллекта) включила 310 пациентов. В обеих группах диагностические колоноскопии выполнялись одними и теми же врачами-эндоскопистами со стажем не менее 10 лет.\\nРезультаты. В контрольной группе пациентов было обнаружено 358 (56,4 %) новообразований толстого кишечника, а в группе исследования — 204 (65,8 %). Наибольшая эффективность системы искусственного интеллекта достигалась при детекции новообразований до 1,0 см в диаметре. Если сравнивать частоту выявления новообразований в группе исследования и контрольной группе в категориях пациентов с размером новообразования до 0,5 см и с размерами от 0,5 до 1,0 см, то разница составит 15,7 %, т. е. в группе исследования новообразования регистрировались значимо чаще, чем в контрольной группе (р˂0,001). При размерах новообразования более 1,0 см в диаметре, существенных различий между группами контроля и исследования не обнаружено. Биопсия выполнялась на 13 % чаще в группе исследования по сравнению с контрольной группой.\\nЗаключение. Система искусственного интеллекта наглядно продемонстрировала свою эффективность в детекции новообразований любых размеров; чувствительность составила 80,7 %. Вероятность обнаружения новообразований менее 1,0 см в диаметре при использовании была выше на 13,7 %, вероятность обнаружения тубулярных аденом всех размеров выше на 9,7 %.\",\"PeriodicalId\":20495,\"journal\":{\"name\":\"Problems in oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problems in oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37469/0507-3758-2023-69-2-292-299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems in oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37469/0507-3758-2023-69-2-292-299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引入。结肠癌的诊断和治疗问题是一个非常紧迫的问题。据世界卫生组织和国际癌症研究机构统计,全球每年大约有1.93亿结肠癌病例。尽管内窥镜设备不断改进,诊断结肠镜检查未确诊的结肠癌病例在2.1%到5.9%之间波动。在癌症前病理学的诊断中,研究占32.8%。错过病理学的原因有很多,其中一个是“人为因素”:被诊断的病理的频率取决于内窥镜医生的资历和经验。目的研究。评估诊断结肠镜检查的有效性,使用人工智能系统来检测大肠新形成。材料和方法。从2021年到2022年,与俄罗斯公司EVA实验室(EVA实验室)合作开发、测试和实施了基于人工智能算法的医疗决策支持系统。研究包括对944名大肠病理患者的材料分析:338名男性(41.1%)和556名女性(58.9%)。男性平均年龄为64 12.9岁,女性平均年龄为63 10.2岁。所有的病人都被分成两组。第一批(对照组)是在2020年人工智能系统投入使用之前形成的,共有634名患者。第二组(研究小组)是一个前卫的团队,从2020年开始(人工智能的引入),包括310名病人。在这两组中,诊断结肠镜检查都是由同样的内窥镜医生进行的,年龄不少于10年。在对接人群中发现了358(56.4%)的结肠新形成,在研究小组中发现了204(65.8%)。人工智能系统的最大效率是通过检测直径为1.0厘米的新形成来实现的。频率检测肿瘤组织研究相比对照组患者肿瘤大小类0.5厘米和0.5至1.0厘米,差额为15.7%,即小组研究肿瘤登记重要性多于对照组(p˂0.001)。在直径超过1.0厘米的新形成中,控制组和研究组之间没有明显的区别。活检在研究小组中比对照组多做13%。人工智能系统在检测各种大小的新生儿方面显示了其有效性;灵敏度为80.7%。直径小于1.0厘米的新肿块被发现的可能性要高13.7%,所有大小的凝灰岩腺被发现的可能性都要高9.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Искусственный интеллект в диагностике новообразований толстого кишечника—разработка, внедрение технологии и первые результаты
Введение. Проблема диагностики и лечения колоректального рака является крайне актуальной проблемой. По данным Всемирной организации здравоохранения и Международного агентства по изучению рака за 2020 г., в мире ежегодно регистрируется около 1,93 млн. случаев колоректального рака. Несмотря на постоянное совершенствование эндоскопического оборудования, число случаев пропущенного рака толстой кишки после выполнения диагностической колоноскопии колеблется от 2,1 % до 5,9 %. В диагностике предраковой патологии доля таких исследований достигает 32,8 %. Причин пропуска патологии множество, одна из которых «человеческий фактор»: частота выявленной патологии зависит от квалификации и опыта врача-эндоскописта. Цель исследования. Оценить эффективность диагностической колоноскопии с применением системы искусственного интеллекта в детекции новообразований толстого кишечника. Материалы и методы. С 2021 по 2022 гг. в ГБУЗ «Челябинский областной клинический центр онкологии и ядерной медицины» совместно с российской компанией EVA Lab (ООО «ЭВА Лаб») была разработана, апробирована и внедрена система поддержки принятия врачебных решений (СППВР) на основе алгоритмов искусственного интеллекта. Исследование включает в себя анализ материалов в отношении 944 пациентов с различной патологией толстого кишечника — 338 мужчин (41,1 %) и 556 женщин (58,9 %). Средний возраст мужчин составил 64 ± 12,9 лет, женщин 63 ± 10,2 лет. Все пациенты были разделены на две группы. Первая группа (контрольная) — ретроспективная, формировалась до внедрения в 2020 г. систем на основе искусственного интеллекта, в нее вошли 634 пациента. Вторая группа (группа исследования) — это проспективная когорта, которая начала формироваться с 2020 г. (с момента внедрения системы искусственного интеллекта) включила 310 пациентов. В обеих группах диагностические колоноскопии выполнялись одними и теми же врачами-эндоскопистами со стажем не менее 10 лет. Результаты. В контрольной группе пациентов было обнаружено 358 (56,4 %) новообразований толстого кишечника, а в группе исследования — 204 (65,8 %). Наибольшая эффективность системы искусственного интеллекта достигалась при детекции новообразований до 1,0 см в диаметре. Если сравнивать частоту выявления новообразований в группе исследования и контрольной группе в категориях пациентов с размером новообразования до 0,5 см и с размерами от 0,5 до 1,0 см, то разница составит 15,7 %, т. е. в группе исследования новообразования регистрировались значимо чаще, чем в контрольной группе (р˂0,001). При размерах новообразования более 1,0 см в диаметре, существенных различий между группами контроля и исследования не обнаружено. Биопсия выполнялась на 13 % чаще в группе исследования по сравнению с контрольной группой. Заключение. Система искусственного интеллекта наглядно продемонстрировала свою эффективность в детекции новообразований любых размеров; чувствительность составила 80,7 %. Вероятность обнаружения новообразований менее 1,0 см в диаметре при использовании была выше на 13,7 %, вероятность обнаружения тубулярных аденом всех размеров выше на 9,7 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信