{"title":"基于统计技术的7级钛(Ti-0.15Pd)合金电火花线切割表面粗糙度及MRR研究","authors":"R. Suresh","doi":"10.24191/jmeche.v20i2.22055","DOIUrl":null,"url":null,"abstract":"Wire Electric Discharge Machining (WEDM) of Titanium grade alloys with coated electrodes has several advantages over the traditional machining process such as increased productivity, reduction of processing cost, and improved material properties. The main objective is to create a relationship between WEDM parameters such as Pulse-on (TON), Pulse-off (TOFF), and Indicated Power (IP) with surface roughness (Ra) and Material Removal Rate (MRR). In the present work, the performance of zinc-coated brass electrodes for WEDM of Titanium Grade-7 alloy was assessed and optimized with statistical technique. ANOVA analysis is used to analysis of the MRR and Ra and validated with regression. The ANOVA analysis results indicated that TON is the highest statistically significant and followed by TOFF and IP on MRR and surface roughness. The optimum combination of higher IP(6 A) and TON time(60 μs) and lower TOFF time (12 μs) is lucrative for a higher MRR of 8.5682 mm3/min and lower surface roughness of 1.66 μm. The SEM images showed homogeneous solidification, columnar grain structure, recast layer surface, and minor surface crack density were noticed at higher cutting conditions. The predicted model and confirmation test results were close to each other with minimum error (<5%), so the model is adequate.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on Surface Roughness and MRR in WEDM of Titanium Grade 7 (Ti-0.15Pd) Alloy using Statistical Techniques\",\"authors\":\"R. Suresh\",\"doi\":\"10.24191/jmeche.v20i2.22055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wire Electric Discharge Machining (WEDM) of Titanium grade alloys with coated electrodes has several advantages over the traditional machining process such as increased productivity, reduction of processing cost, and improved material properties. The main objective is to create a relationship between WEDM parameters such as Pulse-on (TON), Pulse-off (TOFF), and Indicated Power (IP) with surface roughness (Ra) and Material Removal Rate (MRR). In the present work, the performance of zinc-coated brass electrodes for WEDM of Titanium Grade-7 alloy was assessed and optimized with statistical technique. ANOVA analysis is used to analysis of the MRR and Ra and validated with regression. The ANOVA analysis results indicated that TON is the highest statistically significant and followed by TOFF and IP on MRR and surface roughness. The optimum combination of higher IP(6 A) and TON time(60 μs) and lower TOFF time (12 μs) is lucrative for a higher MRR of 8.5682 mm3/min and lower surface roughness of 1.66 μm. The SEM images showed homogeneous solidification, columnar grain structure, recast layer surface, and minor surface crack density were noticed at higher cutting conditions. The predicted model and confirmation test results were close to each other with minimum error (<5%), so the model is adequate.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24191/jmeche.v20i2.22055\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i2.22055","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation on Surface Roughness and MRR in WEDM of Titanium Grade 7 (Ti-0.15Pd) Alloy using Statistical Techniques
Wire Electric Discharge Machining (WEDM) of Titanium grade alloys with coated electrodes has several advantages over the traditional machining process such as increased productivity, reduction of processing cost, and improved material properties. The main objective is to create a relationship between WEDM parameters such as Pulse-on (TON), Pulse-off (TOFF), and Indicated Power (IP) with surface roughness (Ra) and Material Removal Rate (MRR). In the present work, the performance of zinc-coated brass electrodes for WEDM of Titanium Grade-7 alloy was assessed and optimized with statistical technique. ANOVA analysis is used to analysis of the MRR and Ra and validated with regression. The ANOVA analysis results indicated that TON is the highest statistically significant and followed by TOFF and IP on MRR and surface roughness. The optimum combination of higher IP(6 A) and TON time(60 μs) and lower TOFF time (12 μs) is lucrative for a higher MRR of 8.5682 mm3/min and lower surface roughness of 1.66 μm. The SEM images showed homogeneous solidification, columnar grain structure, recast layer surface, and minor surface crack density were noticed at higher cutting conditions. The predicted model and confirmation test results were close to each other with minimum error (<5%), so the model is adequate.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.