{"title":"基于个体生物特征模式的人工图像分析技术","authors":"Israa Mohammed Khudher, Y. Ibrahim, S. A. Altamir","doi":"10.3934/NACO.2020056","DOIUrl":null,"url":null,"abstract":"Biometric characteristics have been used since antiquated decades, particularly in the detection of crimes and investigations. The rapid development in image processing made great progress in biometric features recognition that is used in all life directions, especially when these features recognition is constructed as a computer system. The target of this research is to set up a left foot biometric system by hybridization between image processing and artificial bee colony (ABC) for feature choice that is addressed within artificial image processing. The algorithm is new because of the rare availability of hybridization algorithms in the literature of footprint recognition with the artificial bee colony assessment. The suggested system is tested on a live-captured ninety colored footprint images that composed the visual database. Then the constructed database was classified into nine clusters and normalized to be used at the advanced stages. Features database is constructed from the visual database off-line. The system starts with a comparison operation between the foot-tip image features extracted on-line and the visual database features. The outcome from this process is either a reject or an acceptance message. The results of the proposed work reflect the accuracy and integrity of the output. That is affected by the perfect choice of features as well as the use of artificial bee colony and data clustering which decreased the complexity and later raised the recognition rate to 100%. Our outcomes show the precision of our proposed procedures over others' methods in the field of biometric acknowledgment.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Individual biometrics pattern based artificial image analysis techniques\",\"authors\":\"Israa Mohammed Khudher, Y. Ibrahim, S. A. Altamir\",\"doi\":\"10.3934/NACO.2020056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric characteristics have been used since antiquated decades, particularly in the detection of crimes and investigations. The rapid development in image processing made great progress in biometric features recognition that is used in all life directions, especially when these features recognition is constructed as a computer system. The target of this research is to set up a left foot biometric system by hybridization between image processing and artificial bee colony (ABC) for feature choice that is addressed within artificial image processing. The algorithm is new because of the rare availability of hybridization algorithms in the literature of footprint recognition with the artificial bee colony assessment. The suggested system is tested on a live-captured ninety colored footprint images that composed the visual database. Then the constructed database was classified into nine clusters and normalized to be used at the advanced stages. Features database is constructed from the visual database off-line. The system starts with a comparison operation between the foot-tip image features extracted on-line and the visual database features. The outcome from this process is either a reject or an acceptance message. The results of the proposed work reflect the accuracy and integrity of the output. That is affected by the perfect choice of features as well as the use of artificial bee colony and data clustering which decreased the complexity and later raised the recognition rate to 100%. Our outcomes show the precision of our proposed procedures over others' methods in the field of biometric acknowledgment.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/NACO.2020056\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/NACO.2020056","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Individual biometrics pattern based artificial image analysis techniques
Biometric characteristics have been used since antiquated decades, particularly in the detection of crimes and investigations. The rapid development in image processing made great progress in biometric features recognition that is used in all life directions, especially when these features recognition is constructed as a computer system. The target of this research is to set up a left foot biometric system by hybridization between image processing and artificial bee colony (ABC) for feature choice that is addressed within artificial image processing. The algorithm is new because of the rare availability of hybridization algorithms in the literature of footprint recognition with the artificial bee colony assessment. The suggested system is tested on a live-captured ninety colored footprint images that composed the visual database. Then the constructed database was classified into nine clusters and normalized to be used at the advanced stages. Features database is constructed from the visual database off-line. The system starts with a comparison operation between the foot-tip image features extracted on-line and the visual database features. The outcome from this process is either a reject or an acceptance message. The results of the proposed work reflect the accuracy and integrity of the output. That is affected by the perfect choice of features as well as the use of artificial bee colony and data clustering which decreased the complexity and later raised the recognition rate to 100%. Our outcomes show the precision of our proposed procedures over others' methods in the field of biometric acknowledgment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.