一个结与其反面之间的共距

C. Livingston
{"title":"一个结与其反面之间的共距","authors":"C. Livingston","doi":"10.1090/proc/15809","DOIUrl":null,"url":null,"abstract":"The cobordism distance between knots, d(K,J), equals the four-genus g_4(K # -J). We consider d(K,K^r), where K^r is the reverse of K. It is elementary that 0 \\le d(K,K^r) \\le 2g_4(K) and it is known that there are knots K for which d(K,K^r) is arbitrarily large. Here it is shown that for any knot for which g_4(K) = g_3(K) (such as non-slice knots with g_3(K) = 1 or strongly quasi-positive knots), one has that d(K,K^r) is strictly less that twice g_4(K). It is shown that for arbitrary positive g, there exist knots for which d(K,K^r) = g = g_4(K). There are no known examples for which d(K,K^r) > g_4(K).","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The cobordism distance between a knot and its reverse\",\"authors\":\"C. Livingston\",\"doi\":\"10.1090/proc/15809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cobordism distance between knots, d(K,J), equals the four-genus g_4(K # -J). We consider d(K,K^r), where K^r is the reverse of K. It is elementary that 0 \\\\le d(K,K^r) \\\\le 2g_4(K) and it is known that there are knots K for which d(K,K^r) is arbitrarily large. Here it is shown that for any knot for which g_4(K) = g_3(K) (such as non-slice knots with g_3(K) = 1 or strongly quasi-positive knots), one has that d(K,K^r) is strictly less that twice g_4(K). It is shown that for arbitrary positive g, there exist knots for which d(K,K^r) = g = g_4(K). There are no known examples for which d(K,K^r) > g_4(K).\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

结点之间的协距d(K,J)等于四格g_4(k# -J)。我们考虑d(K,K^r)其中K^r是K的倒数,它是初等的0 \le d(K,K^r) \le 2g_4(K)我们知道有一些结点K d(K,K^r)是任意大的。本文证明了对于任意g_4(K) = g_3(K)的结(如g_3(K) = 1的非切片结或强拟正结),d(K,K^r)严格小于2倍g_4(K)。证明了对于任意正g,存在d(K,K^r) = g = g_4(K)的结点。没有已知的d(K,K^r) > g_4(K)的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The cobordism distance between a knot and its reverse
The cobordism distance between knots, d(K,J), equals the four-genus g_4(K # -J). We consider d(K,K^r), where K^r is the reverse of K. It is elementary that 0 \le d(K,K^r) \le 2g_4(K) and it is known that there are knots K for which d(K,K^r) is arbitrarily large. Here it is shown that for any knot for which g_4(K) = g_3(K) (such as non-slice knots with g_3(K) = 1 or strongly quasi-positive knots), one has that d(K,K^r) is strictly less that twice g_4(K). It is shown that for arbitrary positive g, there exist knots for which d(K,K^r) = g = g_4(K). There are no known examples for which d(K,K^r) > g_4(K).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信