被颤动覆盖的叶理的基本自同构

K. I. Sheina
{"title":"被颤动覆盖的叶理的基本自同构","authors":"K. I. Sheina","doi":"10.21685/2072-3040-2021-1-5","DOIUrl":null,"url":null,"abstract":"The basic automorphism group ${A}_B(M,F)$ of a Cartan foliation $(M, F)$ is the quotient group of the automorphism group of $(M, F)$ by the normal subgroup, which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find sufficient conditions for the existence of a structure of a finite-dimensional Lie group in their basic automorphism groups. Estimates of the dimension of these groups are obtained. For some class of Cartan foliations with integrable an Ehresmann connection, a method for finding of basic automorphism groups is specified.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"219 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basic automorphisms of cartan foliations covered by fibrations\",\"authors\":\"K. I. Sheina\",\"doi\":\"10.21685/2072-3040-2021-1-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic automorphism group ${A}_B(M,F)$ of a Cartan foliation $(M, F)$ is the quotient group of the automorphism group of $(M, F)$ by the normal subgroup, which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find sufficient conditions for the existence of a structure of a finite-dimensional Lie group in their basic automorphism groups. Estimates of the dimension of these groups are obtained. For some class of Cartan foliations with integrable an Ehresmann connection, a method for finding of basic automorphism groups is specified.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"219 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21685/2072-3040-2021-1-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21685/2072-3040-2021-1-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Cartan叶构$(M, F)$的基本自同构群${A}_B(M,F)$是$(M, F)$的自同构群与保持每叶不变量的正规子群的商群。对于被颤振覆盖的卡坦叶理,我们在它们的基本自同构群中找到了有限维李群结构存在的充分条件。得到了这些群的维数估计。对于一类具有可积Ehresmann连接的Cartan叶,给出了一种求基本自同构群的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Basic automorphisms of cartan foliations covered by fibrations
The basic automorphism group ${A}_B(M,F)$ of a Cartan foliation $(M, F)$ is the quotient group of the automorphism group of $(M, F)$ by the normal subgroup, which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find sufficient conditions for the existence of a structure of a finite-dimensional Lie group in their basic automorphism groups. Estimates of the dimension of these groups are obtained. For some class of Cartan foliations with integrable an Ehresmann connection, a method for finding of basic automorphism groups is specified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信