{"title":"由单变量多变量MCMC采样器:R封装MfUSampler","authors":"A. S. Mahani, M. Sharabiani","doi":"10.18637/JSS.V078.C01","DOIUrl":null,"url":null,"abstract":"The R package MfUSampler provides Monte Carlo Markov Chain machinery for generating samples from multivariate probability distributions using univariate sampling algorithms such as Slice Sampler and Adaptive Rejection Sampler. The sampler function performs a full cycle of univariate sampling steps, one coordinate at a time. In each step, the latest sample values obtained for other coordinates are used to form the conditional distributions. The concept is an extension of Gibbs sampling where each step involves, not an independent sample from the conditional distribution, but a Markov transition for which the conditional distribution is invariant. The software relies on proportionality of conditional distributions to the joint distribution to implement a thin wrapper for producing conditionals. Examples illustrate basic usage as well as methods for improving performance. By encapsulating the multivariate-from-univariate logic, MfUSampler provides a reliable library for rapid prototyping of custom Bayesian models while allowing for incremental performance optimizations such as utilization of conjugacy, conditional independence, and porting function evaluations to compiled languages.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler\",\"authors\":\"A. S. Mahani, M. Sharabiani\",\"doi\":\"10.18637/JSS.V078.C01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The R package MfUSampler provides Monte Carlo Markov Chain machinery for generating samples from multivariate probability distributions using univariate sampling algorithms such as Slice Sampler and Adaptive Rejection Sampler. The sampler function performs a full cycle of univariate sampling steps, one coordinate at a time. In each step, the latest sample values obtained for other coordinates are used to form the conditional distributions. The concept is an extension of Gibbs sampling where each step involves, not an independent sample from the conditional distribution, but a Markov transition for which the conditional distribution is invariant. The software relies on proportionality of conditional distributions to the joint distribution to implement a thin wrapper for producing conditionals. Examples illustrate basic usage as well as methods for improving performance. By encapsulating the multivariate-from-univariate logic, MfUSampler provides a reliable library for rapid prototyping of custom Bayesian models while allowing for incremental performance optimizations such as utilization of conjugacy, conditional independence, and porting function evaluations to compiled languages.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18637/JSS.V078.C01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V078.C01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler
The R package MfUSampler provides Monte Carlo Markov Chain machinery for generating samples from multivariate probability distributions using univariate sampling algorithms such as Slice Sampler and Adaptive Rejection Sampler. The sampler function performs a full cycle of univariate sampling steps, one coordinate at a time. In each step, the latest sample values obtained for other coordinates are used to form the conditional distributions. The concept is an extension of Gibbs sampling where each step involves, not an independent sample from the conditional distribution, but a Markov transition for which the conditional distribution is invariant. The software relies on proportionality of conditional distributions to the joint distribution to implement a thin wrapper for producing conditionals. Examples illustrate basic usage as well as methods for improving performance. By encapsulating the multivariate-from-univariate logic, MfUSampler provides a reliable library for rapid prototyping of custom Bayesian models while allowing for incremental performance optimizations such as utilization of conjugacy, conditional independence, and porting function evaluations to compiled languages.