用非凸极小化方法重建高度损坏测量的稀疏信号

Marko Filipovic
{"title":"用非凸极小化方法重建高度损坏测量的稀疏信号","authors":"Marko Filipovic","doi":"10.1109/ICASSP.2014.6854230","DOIUrl":null,"url":null,"abstract":"We propose a method for signal recovery in compressed sensing when measurements can be highly corrupted. It is based on ℓ<sub>p</sub> minimization for 0 <; p ≤ 1. Since it was shown that ℓ<sub>p</sub> minimization performs better than ℓ<sub>1</sub> minimization when there are no large errors, the proposed approach is a natural extension to compressed sensing with corruptions. We provide a theoretical justification of this idea, based on analogous reasoning as in the case when measurements are not corrupted by large errors. Better performance of the proposed approach compared to ℓ<sub>1</sub> minimization is illustrated in numerical experiments.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"28 1","pages":"3395-3399"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reconstruction of sparse signals from highly corrupted measurements by nonconvex minimization\",\"authors\":\"Marko Filipovic\",\"doi\":\"10.1109/ICASSP.2014.6854230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method for signal recovery in compressed sensing when measurements can be highly corrupted. It is based on ℓ<sub>p</sub> minimization for 0 <; p ≤ 1. Since it was shown that ℓ<sub>p</sub> minimization performs better than ℓ<sub>1</sub> minimization when there are no large errors, the proposed approach is a natural extension to compressed sensing with corruptions. We provide a theoretical justification of this idea, based on analogous reasoning as in the case when measurements are not corrupted by large errors. Better performance of the proposed approach compared to ℓ<sub>1</sub> minimization is illustrated in numerical experiments.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"28 1\",\"pages\":\"3395-3399\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种压缩感知中测量数据严重损坏时的信号恢复方法。在不存在较大误差的情况下,该方法的性能优于1最小化,是对带损坏的压缩感知的自然扩展。我们提供了一个理论的理由,基于类似的推理,当测量没有被大误差损坏的情况下。数值实验表明,该方法比最小化方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of sparse signals from highly corrupted measurements by nonconvex minimization
We propose a method for signal recovery in compressed sensing when measurements can be highly corrupted. It is based on ℓp minimization for 0 <; p ≤ 1. Since it was shown that ℓp minimization performs better than ℓ1 minimization when there are no large errors, the proposed approach is a natural extension to compressed sensing with corruptions. We provide a theoretical justification of this idea, based on analogous reasoning as in the case when measurements are not corrupted by large errors. Better performance of the proposed approach compared to ℓ1 minimization is illustrated in numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信