{"title":"与沿里奇流的无限李结构相容的度量的多同质性","authors":"Mahdi Ammar","doi":"10.1016/j.anihpc.2021.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Le long du flot de Ricci, on étudie la polyhomogénéité des métriques pour des variétés riemanniennes non-compactes ayant « une structure de Lie fibrée à l'infini », c'est-à-dire une classe de structures de Lie à l'infini qui induit dans un sens précis des structures de fibrés sur les bords d'une certaine compactification par une variété à coins. Lorsque cette compactification est une variété à bord, cette classe de métriques contient notamment les b-métriques de Melrose, les métriques à bord fibré de Mazzeo-Melrose et les métriques edge de Mazzeo. On montre alors que la polyhomogénéité à l'infini des métriques compatibles avec une structure de Lie fibrée à l'infini est préservée localement par le flot de Ricci-DeTurck. Si la métrique initiale est asymptotiquement Einstein, on obtient la polyhomogénéité des métriques tant que le flot existe. De plus, si la métrique initiale est « lisse jusqu'au bord », alors il en sera de même pour les solutions du flot de Ricci normalisé et du flot de Ricci-DeTurck.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.01.003","citationCount":"3","resultStr":"{\"title\":\"Polyhomogénéité des métriques compatibles avec une structure de Lie à l'infini le long du flot de Ricci\",\"authors\":\"Mahdi Ammar\",\"doi\":\"10.1016/j.anihpc.2021.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Le long du flot de Ricci, on étudie la polyhomogénéité des métriques pour des variétés riemanniennes non-compactes ayant « une structure de Lie fibrée à l'infini », c'est-à-dire une classe de structures de Lie à l'infini qui induit dans un sens précis des structures de fibrés sur les bords d'une certaine compactification par une variété à coins. Lorsque cette compactification est une variété à bord, cette classe de métriques contient notamment les b-métriques de Melrose, les métriques à bord fibré de Mazzeo-Melrose et les métriques edge de Mazzeo. On montre alors que la polyhomogénéité à l'infini des métriques compatibles avec une structure de Lie fibrée à l'infini est préservée localement par le flot de Ricci-DeTurck. Si la métrique initiale est asymptotiquement Einstein, on obtient la polyhomogénéité des métriques tant que le flot existe. De plus, si la métrique initiale est « lisse jusqu'au bord », alors il en sera de même pour les solutions du flot de Ricci normalisé et du flot de Ricci-DeTurck.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.01.003\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144921000238\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144921000238","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Polyhomogénéité des métriques compatibles avec une structure de Lie à l'infini le long du flot de Ricci
Le long du flot de Ricci, on étudie la polyhomogénéité des métriques pour des variétés riemanniennes non-compactes ayant « une structure de Lie fibrée à l'infini », c'est-à-dire une classe de structures de Lie à l'infini qui induit dans un sens précis des structures de fibrés sur les bords d'une certaine compactification par une variété à coins. Lorsque cette compactification est une variété à bord, cette classe de métriques contient notamment les b-métriques de Melrose, les métriques à bord fibré de Mazzeo-Melrose et les métriques edge de Mazzeo. On montre alors que la polyhomogénéité à l'infini des métriques compatibles avec une structure de Lie fibrée à l'infini est préservée localement par le flot de Ricci-DeTurck. Si la métrique initiale est asymptotiquement Einstein, on obtient la polyhomogénéité des métriques tant que le flot existe. De plus, si la métrique initiale est « lisse jusqu'au bord », alors il en sera de même pour les solutions du flot de Ricci normalisé et du flot de Ricci-DeTurck.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.