Xiang Ling, Bin Wu, Hong Wen, Lili Pan, Fengya Luo
{"title":"基于正交频分复用的底层认知无线电功率分配快速高效并行移位充水算法","authors":"Xiang Ling, Bin Wu, Hong Wen, Lili Pan, Fengya Luo","doi":"10.1049/iet-com.2012.0481","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Water-Filling (WF) is widely applied in power allocation in multichannel wireless communications. By mathematically linearising the optimal WF expression, the authors observe an intrinsic parallel-shift property of WF, based on which a fast and efficient WF algorithm is proposed. Compared with the conventional WF algorithms, it greatly simplifies WF execution by removing the Lagrange multiplier (or water-level) searching process. The authors further apply the proposed parallel-shift WF to solve the power allocation problem in orthogonal frequency division multiplexing (OFDM)-based underlay cognitive radios (CRs), with the objective of maximising the secondary user's throughput over all OFDM sub-channels under the transmit power and the interference constraints. To this end, the existing algorithm adopts an iterative binary searching process to find the solution, where the conventional WF algorithm with Lagrange multiplier searching is invoked in each iteration. In contrast, the authors propose a new power allocation algorithm to remove the iterative binary searching process. It runs the simplified parallel-shift WF only once, and then directly calculates the final solution using a power adjustment process (with the parallel-shift property as the underlying enabling mechanism). Numerical results show that both the proposed parallel-shift WF and the OFDM-based CR power allocation algorithms can run multiple times faster than the existing counterparts, and the gap on the running time increases with the total number of OFDM sub-channels in the system.</p>\n </div>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"7 12","pages":"1269-1278"},"PeriodicalIF":1.6000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/iet-com.2012.0481","citationCount":"14","resultStr":"{\"title\":\"Fast and efficient parallel-shift water-filling algorithm for power allocation in orthogonal frequency division multiplexing-based underlay cognitive radios\",\"authors\":\"Xiang Ling, Bin Wu, Hong Wen, Lili Pan, Fengya Luo\",\"doi\":\"10.1049/iet-com.2012.0481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Water-Filling (WF) is widely applied in power allocation in multichannel wireless communications. By mathematically linearising the optimal WF expression, the authors observe an intrinsic parallel-shift property of WF, based on which a fast and efficient WF algorithm is proposed. Compared with the conventional WF algorithms, it greatly simplifies WF execution by removing the Lagrange multiplier (or water-level) searching process. The authors further apply the proposed parallel-shift WF to solve the power allocation problem in orthogonal frequency division multiplexing (OFDM)-based underlay cognitive radios (CRs), with the objective of maximising the secondary user's throughput over all OFDM sub-channels under the transmit power and the interference constraints. To this end, the existing algorithm adopts an iterative binary searching process to find the solution, where the conventional WF algorithm with Lagrange multiplier searching is invoked in each iteration. In contrast, the authors propose a new power allocation algorithm to remove the iterative binary searching process. It runs the simplified parallel-shift WF only once, and then directly calculates the final solution using a power adjustment process (with the parallel-shift property as the underlying enabling mechanism). Numerical results show that both the proposed parallel-shift WF and the OFDM-based CR power allocation algorithms can run multiple times faster than the existing counterparts, and the gap on the running time increases with the total number of OFDM sub-channels in the system.</p>\\n </div>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"7 12\",\"pages\":\"1269-1278\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/iet-com.2012.0481\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-com.2012.0481\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-com.2012.0481","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fast and efficient parallel-shift water-filling algorithm for power allocation in orthogonal frequency division multiplexing-based underlay cognitive radios
Water-Filling (WF) is widely applied in power allocation in multichannel wireless communications. By mathematically linearising the optimal WF expression, the authors observe an intrinsic parallel-shift property of WF, based on which a fast and efficient WF algorithm is proposed. Compared with the conventional WF algorithms, it greatly simplifies WF execution by removing the Lagrange multiplier (or water-level) searching process. The authors further apply the proposed parallel-shift WF to solve the power allocation problem in orthogonal frequency division multiplexing (OFDM)-based underlay cognitive radios (CRs), with the objective of maximising the secondary user's throughput over all OFDM sub-channels under the transmit power and the interference constraints. To this end, the existing algorithm adopts an iterative binary searching process to find the solution, where the conventional WF algorithm with Lagrange multiplier searching is invoked in each iteration. In contrast, the authors propose a new power allocation algorithm to remove the iterative binary searching process. It runs the simplified parallel-shift WF only once, and then directly calculates the final solution using a power adjustment process (with the parallel-shift property as the underlying enabling mechanism). Numerical results show that both the proposed parallel-shift WF and the OFDM-based CR power allocation algorithms can run multiple times faster than the existing counterparts, and the gap on the running time increases with the total number of OFDM sub-channels in the system.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf