{"title":"聚合马尔可夫过程的渐近行为","authors":"L. Cui, He Yi, Weixin Jiang","doi":"10.1017/s0269964823000153","DOIUrl":null,"url":null,"abstract":"\n Finite state Markov processes and their aggregated Markov processes have been extensively studied, especially in ion channel modeling and reliability modeling. In reliability field, the asymptotic behaviors of repairable systems modeled by both processes have been paid much attention to. For a Markov process, it is well-known that limiting measures such as availability and transition probability do not depend on the initial state of the process. However, for an aggregated Markov process, it is difficult to directly know whether this conclusion holds true or not from the limiting measure formulas expressed by the Laplace transforms. In this paper, four limiting measures expressed by Laplace transforms are proved to be independent of the initial state through Tauber’s theorem. The proof is presented under the assumption that the rank of transition rate matrix is one less than the dimension of state space for the Markov process, which includes the case that all states communicate with each other. Some numerical examples and discussions based on these are presented to illustrate the results directly and to show future related research topics. Finally, the conclusion of the paper is given.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"49 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behaviors of aggregated Markov processes\",\"authors\":\"L. Cui, He Yi, Weixin Jiang\",\"doi\":\"10.1017/s0269964823000153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Finite state Markov processes and their aggregated Markov processes have been extensively studied, especially in ion channel modeling and reliability modeling. In reliability field, the asymptotic behaviors of repairable systems modeled by both processes have been paid much attention to. For a Markov process, it is well-known that limiting measures such as availability and transition probability do not depend on the initial state of the process. However, for an aggregated Markov process, it is difficult to directly know whether this conclusion holds true or not from the limiting measure formulas expressed by the Laplace transforms. In this paper, four limiting measures expressed by Laplace transforms are proved to be independent of the initial state through Tauber’s theorem. The proof is presented under the assumption that the rank of transition rate matrix is one less than the dimension of state space for the Markov process, which includes the case that all states communicate with each other. Some numerical examples and discussions based on these are presented to illustrate the results directly and to show future related research topics. Finally, the conclusion of the paper is given.\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/s0269964823000153\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964823000153","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Asymptotic behaviors of aggregated Markov processes
Finite state Markov processes and their aggregated Markov processes have been extensively studied, especially in ion channel modeling and reliability modeling. In reliability field, the asymptotic behaviors of repairable systems modeled by both processes have been paid much attention to. For a Markov process, it is well-known that limiting measures such as availability and transition probability do not depend on the initial state of the process. However, for an aggregated Markov process, it is difficult to directly know whether this conclusion holds true or not from the limiting measure formulas expressed by the Laplace transforms. In this paper, four limiting measures expressed by Laplace transforms are proved to be independent of the initial state through Tauber’s theorem. The proof is presented under the assumption that the rank of transition rate matrix is one less than the dimension of state space for the Markov process, which includes the case that all states communicate with each other. Some numerical examples and discussions based on these are presented to illustrate the results directly and to show future related research topics. Finally, the conclusion of the paper is given.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.