Gegenbauer多项式的一种新推广

IF 0.4 Q4 MATHEMATICS
U. Abubakar
{"title":"Gegenbauer多项式的一种新推广","authors":"U. Abubakar","doi":"10.26713/JIMS.V13I2.1635","DOIUrl":null,"url":null,"abstract":"In this work, the author introduces new generalization of Gegenbauer polynomials of one and two variables by considering new extended gamma function defined by MacDonald function. Certain properties of this new generalized Gegenbauer polynomials like integral formulas, Mellin transform, recurrence relationsand generating function are presented and investigated.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":"27 1","pages":"119-128"},"PeriodicalIF":0.4000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Generalization of Gegenbauer Polynomials\",\"authors\":\"U. Abubakar\",\"doi\":\"10.26713/JIMS.V13I2.1635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the author introduces new generalization of Gegenbauer polynomials of one and two variables by considering new extended gamma function defined by MacDonald function. Certain properties of this new generalized Gegenbauer polynomials like integral formulas, Mellin transform, recurrence relationsand generating function are presented and investigated.\",\"PeriodicalId\":43670,\"journal\":{\"name\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"volume\":\"27 1\",\"pages\":\"119-128\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Mathematical Sciences and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26713/JIMS.V13I2.1635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26713/JIMS.V13I2.1635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过考虑MacDonald函数定义的新的扩展伽马函数,介绍了一元和二元Gegenbauer多项式的新推广。给出并研究了这种新的广义Gegenbauer多项式的积分公式、Mellin变换、递归关系和生成函数等性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Generalization of Gegenbauer Polynomials
In this work, the author introduces new generalization of Gegenbauer polynomials of one and two variables by considering new extended gamma function defined by MacDonald function. Certain properties of this new generalized Gegenbauer polynomials like integral formulas, Mellin transform, recurrence relationsand generating function are presented and investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信