Kyle S. Skalenko, Lingting Li, Yuanchao Zhang, I. Vvedenskaya, Jared T. Winkelman, Alexander L. Cope, Deanne Taylor, Premal Shah, R. Ebright, J. Kinney, Yu Zhang, Bryce E. Nickels
{"title":"大肠杆菌启动子序列决定因素及引物依赖性转录起始的结构基础","authors":"Kyle S. Skalenko, Lingting Li, Yuanchao Zhang, I. Vvedenskaya, Jared T. Winkelman, Alexander L. Cope, Deanne Taylor, Premal Shah, R. Ebright, J. Kinney, Yu Zhang, Bryce E. Nickels","doi":"10.1101/2021.04.06.438613","DOIUrl":null,"url":null,"abstract":"Significance Primer-dependent transcription initiation—the use of RNA primers as initiating entities in transcription initiation—yields RNA products having a 5′-hydroxyl. Here, we show that primer-dependent initiation in vivo in Escherichia coli involves predominantly dinucleotide primers, involves any of the 16 possible dinucleotide primers, and depends on promoter sequences in, upstream, and downstream of the primer binding site. Crystal structures explain the structural basis of sequence dependence at the promoter position immediately upstream of the primer binding site, namely, interchain base stacking between the promoter template-strand nucleotide and primer 5′ nucleotide. Taken together, our findings provide a mechanistic and structural description of primer-dependent initiation in E. coli. Chemical modifications of RNA 5′-ends enable “epitranscriptomic” regulation, influencing multiple aspects of RNA fate. In transcription initiation, a large inventory of substrates compete with nucleoside triphosphates for use as initiating entities, providing an ab initio mechanism for altering the RNA 5′-end. In Escherichia coli cells, RNAs with a 5′-end hydroxyl are generated by use of dinucleotide RNAs as primers for transcription initiation, “primer-dependent initiation.” Here, we use massively systematic transcript end readout (MASTER) to detect and quantify RNA 5′-ends generated by primer-dependent initiation for ∼410 (∼1,000,000) promoter sequences in E. coli. The results show primer-dependent initiation in E. coli involves any of the 16 possible dinucleotide primers and depends on promoter sequences in, upstream, and downstream of the primer binding site. The results yield a consensus sequence for primer-dependent initiation, YTSS−2NTSS−1NTSSWTSS+1, where TSS is the transcription start site, NTSS−1NTSS is the primer binding site, Y is pyrimidine, and W is A or T. Biochemical and structure-determination studies show that the base pair (nontemplate-strand base:template-strand base) immediately upstream of the primer binding site (Y:RTSS−2, where R is purine) exerts its effect through the base on the DNA template strand (RTSS−2) through interchain base stacking with the RNA primer. Results from analysis of a large set of natural, chromosomally encoded E. coli promoters support the conclusions from MASTER. Our findings provide a mechanistic and structural description of how TSS-region sequence hard-codes not only the TSS position but also the potential for epitranscriptomic regulation through primer-dependent transcription initiation.","PeriodicalId":20595,"journal":{"name":"Proceedings of the National Academy of Sciences","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Promoter-sequence determinants and structural basis of primer-dependent transcription initiation in Escherichia coli\",\"authors\":\"Kyle S. Skalenko, Lingting Li, Yuanchao Zhang, I. Vvedenskaya, Jared T. Winkelman, Alexander L. Cope, Deanne Taylor, Premal Shah, R. Ebright, J. Kinney, Yu Zhang, Bryce E. Nickels\",\"doi\":\"10.1101/2021.04.06.438613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significance Primer-dependent transcription initiation—the use of RNA primers as initiating entities in transcription initiation—yields RNA products having a 5′-hydroxyl. Here, we show that primer-dependent initiation in vivo in Escherichia coli involves predominantly dinucleotide primers, involves any of the 16 possible dinucleotide primers, and depends on promoter sequences in, upstream, and downstream of the primer binding site. Crystal structures explain the structural basis of sequence dependence at the promoter position immediately upstream of the primer binding site, namely, interchain base stacking between the promoter template-strand nucleotide and primer 5′ nucleotide. Taken together, our findings provide a mechanistic and structural description of primer-dependent initiation in E. coli. Chemical modifications of RNA 5′-ends enable “epitranscriptomic” regulation, influencing multiple aspects of RNA fate. In transcription initiation, a large inventory of substrates compete with nucleoside triphosphates for use as initiating entities, providing an ab initio mechanism for altering the RNA 5′-end. In Escherichia coli cells, RNAs with a 5′-end hydroxyl are generated by use of dinucleotide RNAs as primers for transcription initiation, “primer-dependent initiation.” Here, we use massively systematic transcript end readout (MASTER) to detect and quantify RNA 5′-ends generated by primer-dependent initiation for ∼410 (∼1,000,000) promoter sequences in E. coli. The results show primer-dependent initiation in E. coli involves any of the 16 possible dinucleotide primers and depends on promoter sequences in, upstream, and downstream of the primer binding site. The results yield a consensus sequence for primer-dependent initiation, YTSS−2NTSS−1NTSSWTSS+1, where TSS is the transcription start site, NTSS−1NTSS is the primer binding site, Y is pyrimidine, and W is A or T. Biochemical and structure-determination studies show that the base pair (nontemplate-strand base:template-strand base) immediately upstream of the primer binding site (Y:RTSS−2, where R is purine) exerts its effect through the base on the DNA template strand (RTSS−2) through interchain base stacking with the RNA primer. Results from analysis of a large set of natural, chromosomally encoded E. coli promoters support the conclusions from MASTER. Our findings provide a mechanistic and structural description of how TSS-region sequence hard-codes not only the TSS position but also the potential for epitranscriptomic regulation through primer-dependent transcription initiation.\",\"PeriodicalId\":20595,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.04.06.438613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.04.06.438613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Promoter-sequence determinants and structural basis of primer-dependent transcription initiation in Escherichia coli
Significance Primer-dependent transcription initiation—the use of RNA primers as initiating entities in transcription initiation—yields RNA products having a 5′-hydroxyl. Here, we show that primer-dependent initiation in vivo in Escherichia coli involves predominantly dinucleotide primers, involves any of the 16 possible dinucleotide primers, and depends on promoter sequences in, upstream, and downstream of the primer binding site. Crystal structures explain the structural basis of sequence dependence at the promoter position immediately upstream of the primer binding site, namely, interchain base stacking between the promoter template-strand nucleotide and primer 5′ nucleotide. Taken together, our findings provide a mechanistic and structural description of primer-dependent initiation in E. coli. Chemical modifications of RNA 5′-ends enable “epitranscriptomic” regulation, influencing multiple aspects of RNA fate. In transcription initiation, a large inventory of substrates compete with nucleoside triphosphates for use as initiating entities, providing an ab initio mechanism for altering the RNA 5′-end. In Escherichia coli cells, RNAs with a 5′-end hydroxyl are generated by use of dinucleotide RNAs as primers for transcription initiation, “primer-dependent initiation.” Here, we use massively systematic transcript end readout (MASTER) to detect and quantify RNA 5′-ends generated by primer-dependent initiation for ∼410 (∼1,000,000) promoter sequences in E. coli. The results show primer-dependent initiation in E. coli involves any of the 16 possible dinucleotide primers and depends on promoter sequences in, upstream, and downstream of the primer binding site. The results yield a consensus sequence for primer-dependent initiation, YTSS−2NTSS−1NTSSWTSS+1, where TSS is the transcription start site, NTSS−1NTSS is the primer binding site, Y is pyrimidine, and W is A or T. Biochemical and structure-determination studies show that the base pair (nontemplate-strand base:template-strand base) immediately upstream of the primer binding site (Y:RTSS−2, where R is purine) exerts its effect through the base on the DNA template strand (RTSS−2) through interchain base stacking with the RNA primer. Results from analysis of a large set of natural, chromosomally encoded E. coli promoters support the conclusions from MASTER. Our findings provide a mechanistic and structural description of how TSS-region sequence hard-codes not only the TSS position but also the potential for epitranscriptomic regulation through primer-dependent transcription initiation.