{"title":"形式三角矩阵环上的丁模和维数","authors":"L. Mao","doi":"10.4171/rsmup/100","DOIUrl":null,"url":null,"abstract":"Let $T=\\biggl(\\begin{matrix} A&0\\\\ U&B \\end{matrix}\\biggr)$ be a formal triangular matrix ring, where $A$ and $B$ are rings and $U$ is a $(B, A)$-bimodule. We prove that: (1) If $U_A$ and $_B U$ have finite flat dimensions, then a left $T$-module $\\biggl(\\begin{matrix} M_1\\\\ M_2\\end{matrix}\\biggr)_{\\varphi^M}$ is Ding projective if and only if $M_1$ and $M_2/{\\rm im}(\\varphi^M)$ are Ding projective and the morphism $\\varphi^M$ is a monomorphism. (2) If $T$ is a right coherent ring, $_{B}U$ has finite flat dimension, $U_{A}$ is finitely presented and has finite projective or $FP$-injective dimension, then a right $T$-module $(W_{1}, W_{2})_{\\varphi_{W}}$ is Ding injective if and only if $W_{1}$ and $\\ker(\\widetilde{\\varphi_{W}})$ are Ding injective and the morphism $\\widetilde{\\varphi_{W}}$ is an epimorphism. As a consequence, we describe Ding projective and Ding injective dimensions of a $T$-module.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"183 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Ding modules and dimensions over formal triangular matrix rings\",\"authors\":\"L. Mao\",\"doi\":\"10.4171/rsmup/100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $T=\\\\biggl(\\\\begin{matrix} A&0\\\\\\\\ U&B \\\\end{matrix}\\\\biggr)$ be a formal triangular matrix ring, where $A$ and $B$ are rings and $U$ is a $(B, A)$-bimodule. We prove that: (1) If $U_A$ and $_B U$ have finite flat dimensions, then a left $T$-module $\\\\biggl(\\\\begin{matrix} M_1\\\\\\\\ M_2\\\\end{matrix}\\\\biggr)_{\\\\varphi^M}$ is Ding projective if and only if $M_1$ and $M_2/{\\\\rm im}(\\\\varphi^M)$ are Ding projective and the morphism $\\\\varphi^M$ is a monomorphism. (2) If $T$ is a right coherent ring, $_{B}U$ has finite flat dimension, $U_{A}$ is finitely presented and has finite projective or $FP$-injective dimension, then a right $T$-module $(W_{1}, W_{2})_{\\\\varphi_{W}}$ is Ding injective if and only if $W_{1}$ and $\\\\ker(\\\\widetilde{\\\\varphi_{W}})$ are Ding injective and the morphism $\\\\widetilde{\\\\varphi_{W}}$ is an epimorphism. As a consequence, we describe Ding projective and Ding injective dimensions of a $T$-module.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
设$T=\biggl(\begin{matrix} a &0\\ U&B \end{matrix}\biggr)$是一个形式三角矩阵环,其中$ a $和$B$是环,$U$是一个$(B, a)$-双模。证明了(1)如果$U_A$和$_B U$具有有限的平坦维数,则左$T$-模$\biggl(\begin{matrix} M_1\\ M_2\end{matrix}\biggr)_{\varphi^M}$是Ding投影当且仅当$M_1$和$M_2/{\rm im}(\varphi^M)$是Ding投影且态射$\varphi^M$是单态。(2)如果$T$是一个右相干环,$_{B}U$具有有限的平面维数,$U_{a}$是有限的投影维数或$FP$-内射维数,则一个右$T$-模$(W_{1}, W_{2}) $ {\varphi_{W}}$是Ding内射当且仅当$W_{1}$和$\ker(\ widdetilde {\varphi_{W}})$是Ding内射且态射$\ widdetilde {\varphi_{W}}$是上射。因此,我们描述了$T$-模的Ding投影维和Ding内射维。
Ding modules and dimensions over formal triangular matrix rings
Let $T=\biggl(\begin{matrix} A&0\\ U&B \end{matrix}\biggr)$ be a formal triangular matrix ring, where $A$ and $B$ are rings and $U$ is a $(B, A)$-bimodule. We prove that: (1) If $U_A$ and $_B U$ have finite flat dimensions, then a left $T$-module $\biggl(\begin{matrix} M_1\\ M_2\end{matrix}\biggr)_{\varphi^M}$ is Ding projective if and only if $M_1$ and $M_2/{\rm im}(\varphi^M)$ are Ding projective and the morphism $\varphi^M$ is a monomorphism. (2) If $T$ is a right coherent ring, $_{B}U$ has finite flat dimension, $U_{A}$ is finitely presented and has finite projective or $FP$-injective dimension, then a right $T$-module $(W_{1}, W_{2})_{\varphi_{W}}$ is Ding injective if and only if $W_{1}$ and $\ker(\widetilde{\varphi_{W}})$ are Ding injective and the morphism $\widetilde{\varphi_{W}}$ is an epimorphism. As a consequence, we describe Ding projective and Ding injective dimensions of a $T$-module.