{"title":"可积哈密顿系统的粗糙Liouville等价","authors":"N. M., K. S. Subrahamanian Moosath","doi":"10.37622/adsa/15.2.2020.153-169","DOIUrl":null,"url":null,"abstract":"In this paper, first we study the rough Liouville equivalence of non-degenerate integrable Hamiltonian systems with two degrees of freedom using geometric skeleton. Then consider the rough Liouville equivalence using molecules and show that both the approaches are equivalent. Classification: MSC 37J15. MSC 37J35","PeriodicalId":36469,"journal":{"name":"Advances in Dynamical Systems and Applications","volume":"240 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rough Liouville Equivalence of Integrable Hamiltonian Systems\",\"authors\":\"N. M., K. S. Subrahamanian Moosath\",\"doi\":\"10.37622/adsa/15.2.2020.153-169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, first we study the rough Liouville equivalence of non-degenerate integrable Hamiltonian systems with two degrees of freedom using geometric skeleton. Then consider the rough Liouville equivalence using molecules and show that both the approaches are equivalent. Classification: MSC 37J15. MSC 37J35\",\"PeriodicalId\":36469,\"journal\":{\"name\":\"Advances in Dynamical Systems and Applications\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Dynamical Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37622/adsa/15.2.2020.153-169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Dynamical Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37622/adsa/15.2.2020.153-169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Rough Liouville Equivalence of Integrable Hamiltonian Systems
In this paper, first we study the rough Liouville equivalence of non-degenerate integrable Hamiltonian systems with two degrees of freedom using geometric skeleton. Then consider the rough Liouville equivalence using molecules and show that both the approaches are equivalent. Classification: MSC 37J15. MSC 37J35