P1A-8模糊超声图像作为isi影响信号:关节组织响应估计和通道跟踪

L. De Marchi, A. Palladini, N. Testoni, N. Speciale
{"title":"P1A-8模糊超声图像作为isi影响信号:关节组织响应估计和通道跟踪","authors":"L. De Marchi, A. Palladini, N. Testoni, N. Speciale","doi":"10.1109/ULTSYM.2007.319","DOIUrl":null,"url":null,"abstract":"Biomedical ultrasound (US) image quality is limited due to the blurring of tissue reflectivity introduced by the transducer Point Spread Function (PSF). We present a method based on a Maximum Likelihood (ML) estimation of tissue response. We adopt efficient equalization techniques usually applied in digital communications: the ultrasonic RF signal is considered as a sequence of discrete values (symbols) affected by channel intersymbol interference (ISI), and processed with a reduced-complexity Viterbi algorithm. Spatial variations of the channel are then tracked by coupling the Viterbi algorithm with a least mean square (LMS) real-time updating procedure. Finally, an adaptive symbol-quantization is defined to overcome the qualitative limitation due to a finite-length alphabet. The results show that the fast LMS adaptation of the channel allows for a real-time spatial analysis and compensation of tissue attenuation effects and inhomogeneities, thus enhancing the diagnostic capability of US images.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"110 1","pages":"1270-1273"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"P1A-8 Blurred Ultrasonic Images as ISI-Affected Signals: Joint Tissue Response Estimation and Channel Tracking in the Proposed Paradigm\",\"authors\":\"L. De Marchi, A. Palladini, N. Testoni, N. Speciale\",\"doi\":\"10.1109/ULTSYM.2007.319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomedical ultrasound (US) image quality is limited due to the blurring of tissue reflectivity introduced by the transducer Point Spread Function (PSF). We present a method based on a Maximum Likelihood (ML) estimation of tissue response. We adopt efficient equalization techniques usually applied in digital communications: the ultrasonic RF signal is considered as a sequence of discrete values (symbols) affected by channel intersymbol interference (ISI), and processed with a reduced-complexity Viterbi algorithm. Spatial variations of the channel are then tracked by coupling the Viterbi algorithm with a least mean square (LMS) real-time updating procedure. Finally, an adaptive symbol-quantization is defined to overcome the qualitative limitation due to a finite-length alphabet. The results show that the fast LMS adaptation of the channel allows for a real-time spatial analysis and compensation of tissue attenuation effects and inhomogeneities, thus enhancing the diagnostic capability of US images.\",\"PeriodicalId\":6355,\"journal\":{\"name\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"volume\":\"110 1\",\"pages\":\"1270-1273\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2007.319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于换能器点扩散函数(PSF)引入的组织反射率模糊,生物医学超声(US)图像质量受到限制。我们提出了一种基于最大似然(ML)估计组织反应的方法。我们采用了数字通信中常用的有效均衡技术:将超声波射频信号视为受信道码间干扰(ISI)影响的离散值(符号)序列,并采用降低复杂度的Viterbi算法进行处理。然后通过将Viterbi算法与最小均方(LMS)实时更新程序相结合来跟踪信道的空间变化。最后,定义了一种自适应符号量化方法,克服了有限长度字母所带来的定性限制。结果表明,通道的快速LMS适应允许实时空间分析和补偿组织衰减效应和不均匀性,从而增强了超声图像的诊断能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
P1A-8 Blurred Ultrasonic Images as ISI-Affected Signals: Joint Tissue Response Estimation and Channel Tracking in the Proposed Paradigm
Biomedical ultrasound (US) image quality is limited due to the blurring of tissue reflectivity introduced by the transducer Point Spread Function (PSF). We present a method based on a Maximum Likelihood (ML) estimation of tissue response. We adopt efficient equalization techniques usually applied in digital communications: the ultrasonic RF signal is considered as a sequence of discrete values (symbols) affected by channel intersymbol interference (ISI), and processed with a reduced-complexity Viterbi algorithm. Spatial variations of the channel are then tracked by coupling the Viterbi algorithm with a least mean square (LMS) real-time updating procedure. Finally, an adaptive symbol-quantization is defined to overcome the qualitative limitation due to a finite-length alphabet. The results show that the fast LMS adaptation of the channel allows for a real-time spatial analysis and compensation of tissue attenuation effects and inhomogeneities, thus enhancing the diagnostic capability of US images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信