心血管支架制造技术及材料综述

IF 2.8 3区 工程技术 Q2 ENGINEERING, MANUFACTURING
B. Polanec, J. Kramberger, S. Glodež
{"title":"心血管支架制造技术及材料综述","authors":"B. Polanec, J. Kramberger, S. Glodež","doi":"10.14743/apem2020.4.373","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to give a general overview of the production technologies of stents with consideration of their design and materials. Since the beginning of the use of stents in medicine for atherosclerosis treatment, their development has changed rapidly. Various stents have also been developed with the development of materials science, treatment techniques and new manufacturing processes. In this way the development has shifted from the initial bare-metal stents (BMS), to drug-eluting stents (DES) and bio-resorbable stents (BRS), which are made of biodegradable polymers or metals. Various studies agree that it will be necessary to further review the experimentally obtained material properties with analytical and numerical studies. Here, the computational modelling (Finite element analysis - FEA and Computational fluid dynamics - CFD) was found as a valuable tool when evaluating stent mechanics and optimizing stent design. The development of the stent manufacturing technologies has also changed and been supplemented over the years. Nowadays, 3D printing could be an exciting manufacturing method to produce polymeric bio-materials, suitable for the latest generation of bio-degradable stents applications.","PeriodicalId":48763,"journal":{"name":"Advances in Production Engineering & Management","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A review of production technologies and materials for manufacturing of cardiovascular stents\",\"authors\":\"B. Polanec, J. Kramberger, S. Glodež\",\"doi\":\"10.14743/apem2020.4.373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to give a general overview of the production technologies of stents with consideration of their design and materials. Since the beginning of the use of stents in medicine for atherosclerosis treatment, their development has changed rapidly. Various stents have also been developed with the development of materials science, treatment techniques and new manufacturing processes. In this way the development has shifted from the initial bare-metal stents (BMS), to drug-eluting stents (DES) and bio-resorbable stents (BRS), which are made of biodegradable polymers or metals. Various studies agree that it will be necessary to further review the experimentally obtained material properties with analytical and numerical studies. Here, the computational modelling (Finite element analysis - FEA and Computational fluid dynamics - CFD) was found as a valuable tool when evaluating stent mechanics and optimizing stent design. The development of the stent manufacturing technologies has also changed and been supplemented over the years. Nowadays, 3D printing could be an exciting manufacturing method to produce polymeric bio-materials, suitable for the latest generation of bio-degradable stents applications.\",\"PeriodicalId\":48763,\"journal\":{\"name\":\"Advances in Production Engineering & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Production Engineering & Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.14743/apem2020.4.373\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Production Engineering & Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.14743/apem2020.4.373","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 10

摘要

本文的目的是对支架的生产技术进行概述,并考虑其设计和材料。自从在动脉粥样硬化治疗中开始使用支架以来,其发展发生了迅速变化。随着材料科学、处理技术和新的制造工艺的发展,各种支架也被开发出来。以这种方式,发展已经从最初的裸金属支架(BMS)转变为药物洗脱支架(DES)和生物可吸收支架(BRS),它们由可生物降解的聚合物或金属制成。各种研究一致认为,有必要通过分析和数值研究来进一步审查实验获得的材料特性。在这里,计算建模(有限元分析- FEA和计算流体动力学- CFD)被认为是评估支架力学和优化支架设计的有价值的工具。近年来,支架制造技术的发展也发生了变化和补充。如今,3D打印可能是一种令人兴奋的制造方法,可以生产高分子生物材料,适用于最新一代的生物可降解支架应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of production technologies and materials for manufacturing of cardiovascular stents
The purpose of this article is to give a general overview of the production technologies of stents with consideration of their design and materials. Since the beginning of the use of stents in medicine for atherosclerosis treatment, their development has changed rapidly. Various stents have also been developed with the development of materials science, treatment techniques and new manufacturing processes. In this way the development has shifted from the initial bare-metal stents (BMS), to drug-eluting stents (DES) and bio-resorbable stents (BRS), which are made of biodegradable polymers or metals. Various studies agree that it will be necessary to further review the experimentally obtained material properties with analytical and numerical studies. Here, the computational modelling (Finite element analysis - FEA and Computational fluid dynamics - CFD) was found as a valuable tool when evaluating stent mechanics and optimizing stent design. The development of the stent manufacturing technologies has also changed and been supplemented over the years. Nowadays, 3D printing could be an exciting manufacturing method to produce polymeric bio-materials, suitable for the latest generation of bio-degradable stents applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Production Engineering & Management
Advances in Production Engineering & Management ENGINEERING, MANUFACTURINGMATERIALS SCIENC-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
22.20%
发文量
19
期刊介绍: Advances in Production Engineering & Management (APEM journal) is an interdisciplinary international academic journal published quarterly. The main goal of the APEM journal is to present original, high quality, theoretical and application-oriented research developments in all areas of production engineering and production management to a broad audience of academics and practitioners. In order to bridge the gap between theory and practice, applications based on advanced theory and case studies are particularly welcome. For theoretical papers, their originality and research contributions are the main factors in the evaluation process. General approaches, formalisms, algorithms or techniques should be illustrated with significant applications that demonstrate their applicability to real-world problems. Please note the APEM journal is not intended especially for studying problems in the finance, economics, business, and bank sectors even though the methodology in the paper is quality/project management oriented. Therefore, the papers should include a substantial level of engineering issues in the field of manufacturing engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信