欧几里得平面上幂p斯坦纳树问题的算法

C. Burt, Alysson M. Costa, C. Ras
{"title":"欧几里得平面上幂p斯坦纳树问题的算法","authors":"C. Burt, Alysson M. Costa, C. Ras","doi":"10.22456/2175-2745.80525","DOIUrl":null,"url":null,"abstract":"We study the problem of constructing minimum power-$p$ Euclidean $k$-Steiner trees in the plane. The problem is to find a tree of minimum cost spanning a set of given terminals where, as opposed to the minimum spanning tree problem, at most $k$ additional nodes (Steiner points) may be introduced anywhere in the plane. The cost of an edge is its length to the power of $p$ (where $p\\geq 1$), and the cost of a network is the sum of all edge costs. We propose two heuristics: a ``beaded\" minimum spanning tree heuristic; and a heuristic which alternates between minimum spanning tree construction and a local fixed topology minimisation procedure for locating the Steiner points. We show that the performance ratio $\\kappa$ of the beaded-MST heuristic satisfies $\\sqrt{3}^{p-1}(1+2^{1-p})\\leq \\kappa\\leq 3(2^{p-1})$. We then provide two mixed-integer nonlinear programming formulations for the problem, and extend several important geometric properties into valid inequalities. Finally, we combine the valid inequalities with warm-starting and preprocessing to obtain computational improvements for the $p=2$ case.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for the power-p Steiner tree problem in the Euclidean plane\",\"authors\":\"C. Burt, Alysson M. Costa, C. Ras\",\"doi\":\"10.22456/2175-2745.80525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of constructing minimum power-$p$ Euclidean $k$-Steiner trees in the plane. The problem is to find a tree of minimum cost spanning a set of given terminals where, as opposed to the minimum spanning tree problem, at most $k$ additional nodes (Steiner points) may be introduced anywhere in the plane. The cost of an edge is its length to the power of $p$ (where $p\\\\geq 1$), and the cost of a network is the sum of all edge costs. We propose two heuristics: a ``beaded\\\" minimum spanning tree heuristic; and a heuristic which alternates between minimum spanning tree construction and a local fixed topology minimisation procedure for locating the Steiner points. We show that the performance ratio $\\\\kappa$ of the beaded-MST heuristic satisfies $\\\\sqrt{3}^{p-1}(1+2^{1-p})\\\\leq \\\\kappa\\\\leq 3(2^{p-1})$. We then provide two mixed-integer nonlinear programming formulations for the problem, and extend several important geometric properties into valid inequalities. Finally, we combine the valid inequalities with warm-starting and preprocessing to obtain computational improvements for the $p=2$ case.\",\"PeriodicalId\":82472,\"journal\":{\"name\":\"Research initiative, treatment action : RITA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research initiative, treatment action : RITA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22456/2175-2745.80525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.80525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了平面上最小幂- $p$欧几里得$k$ -斯坦纳树的构造问题。问题是找到一棵生成一组给定端点的最小代价树,在这些端点中,与最小生成树问题相反,在平面的任何地方最多可以引入$k$附加节点(斯坦纳点)。一条边的成本是其长度的$p$次方(其中$p\geq 1$),而网络的成本是所有边成本的总和。我们提出了两种启发式方法:“头状”最小生成树启发式;以及在最小生成树构造和用于定位施泰纳点的局部固定拓扑最小化过程之间交替的启发式方法。我们证明了headed - mst启发式算法的性能比$\kappa$满足$\sqrt{3}^{p-1}(1+2^{1-p})\leq \kappa\leq 3(2^{p-1})$。然后,我们给出了两个混合整数非线性规划公式,并将几个重要的几何性质推广到有效的不等式中。最后,我们将有效不等式与热启动和预处理相结合,以获得$p=2$情况下的计算改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for the power-p Steiner tree problem in the Euclidean plane
We study the problem of constructing minimum power-$p$ Euclidean $k$-Steiner trees in the plane. The problem is to find a tree of minimum cost spanning a set of given terminals where, as opposed to the minimum spanning tree problem, at most $k$ additional nodes (Steiner points) may be introduced anywhere in the plane. The cost of an edge is its length to the power of $p$ (where $p\geq 1$), and the cost of a network is the sum of all edge costs. We propose two heuristics: a ``beaded" minimum spanning tree heuristic; and a heuristic which alternates between minimum spanning tree construction and a local fixed topology minimisation procedure for locating the Steiner points. We show that the performance ratio $\kappa$ of the beaded-MST heuristic satisfies $\sqrt{3}^{p-1}(1+2^{1-p})\leq \kappa\leq 3(2^{p-1})$. We then provide two mixed-integer nonlinear programming formulations for the problem, and extend several important geometric properties into valid inequalities. Finally, we combine the valid inequalities with warm-starting and preprocessing to obtain computational improvements for the $p=2$ case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信