关于Mori域的一个猜想的一些结果

Habte Gebru
{"title":"关于Mori域的一个猜想的一些结果","authors":"Habte Gebru","doi":"10.5036/MJIU.43.43","DOIUrl":null,"url":null,"abstract":"Based on the famous Mori-Nagata Theorem: The integral closure of a noetherian domain is a Krull domain, similar assertion was conjectured for Mori domain as follows: The complete integral closure of a Mori domain is a Krull domain. The conjecture is positive for a noetherian domain, Krull domain, a semi normal Mori domain [6] and Mori domains for which (D : D*) ≠ 0. In general, as M. Roitman has noted [26], the conjecture is not true. In this paper, an attempt is being made, among other things, to prove that the conjecture is true for a one dimensional Mori domain and for a finite dimensional AV- Mori domain. On the other hand, using the idea of conductor ideals, a simplified proof is given that the conjecture is true for semi normal Mori domains with nonzero pseudo radical.","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"6 1","pages":"43-50"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on a conjecture regarding Mori domain\",\"authors\":\"Habte Gebru\",\"doi\":\"10.5036/MJIU.43.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the famous Mori-Nagata Theorem: The integral closure of a noetherian domain is a Krull domain, similar assertion was conjectured for Mori domain as follows: The complete integral closure of a Mori domain is a Krull domain. The conjecture is positive for a noetherian domain, Krull domain, a semi normal Mori domain [6] and Mori domains for which (D : D*) ≠ 0. In general, as M. Roitman has noted [26], the conjecture is not true. In this paper, an attempt is being made, among other things, to prove that the conjecture is true for a one dimensional Mori domain and for a finite dimensional AV- Mori domain. On the other hand, using the idea of conductor ideals, a simplified proof is given that the conjecture is true for semi normal Mori domains with nonzero pseudo radical.\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"6 1\",\"pages\":\"43-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.43.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.43.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于著名的Mori- nagata定理:noetherian域的积分闭包是Krull域,我们对Mori域作了类似的假设:Mori域的完全积分闭包是Krull域。对于noetherian定义域、Krull定义域、半正规Mori定义域[6]和(D: D*)≠0的Mori定义域,猜想是正的。一般来说,正如M. Roitman所指出的[26],这个猜想是不正确的。在本文中,我们试图证明这个猜想对于一维Mori域和有限维AV- Mori域是成立的。另一方面,利用导体理想的思想,给出了该猜想对于具有非零伪根的半正规Mori域成立的简化证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on a conjecture regarding Mori domain
Based on the famous Mori-Nagata Theorem: The integral closure of a noetherian domain is a Krull domain, similar assertion was conjectured for Mori domain as follows: The complete integral closure of a Mori domain is a Krull domain. The conjecture is positive for a noetherian domain, Krull domain, a semi normal Mori domain [6] and Mori domains for which (D : D*) ≠ 0. In general, as M. Roitman has noted [26], the conjecture is not true. In this paper, an attempt is being made, among other things, to prove that the conjecture is true for a one dimensional Mori domain and for a finite dimensional AV- Mori domain. On the other hand, using the idea of conductor ideals, a simplified proof is given that the conjecture is true for semi normal Mori domains with nonzero pseudo radical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信