基于代数构造的简单维恩图新画法

Q4 Mathematics
Arnaud Bannier, N. Bodin
{"title":"基于代数构造的简单维恩图新画法","authors":"Arnaud Bannier, N. Bodin","doi":"10.20382/jocg.v8i1a8","DOIUrl":null,"url":null,"abstract":"Venn diagrams are used to display all relations between a finite number of sets. Recent researches in this domain concern the mathematical aspects of these constructions, but are not directed towards the readability of the diagram. This article presents a new way to draw easy-to-read Venn diagrams, in which each region tends to be drawn with the same size when the number of sets grows, and tends to draw a grid. Finally, using linear algebra, we prove that this construction gives a simple Venn diagram for any number of sets.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"3 1","pages":"153-173"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new drawing for simple Venn diagrams based on algebraic construction\",\"authors\":\"Arnaud Bannier, N. Bodin\",\"doi\":\"10.20382/jocg.v8i1a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Venn diagrams are used to display all relations between a finite number of sets. Recent researches in this domain concern the mathematical aspects of these constructions, but are not directed towards the readability of the diagram. This article presents a new way to draw easy-to-read Venn diagrams, in which each region tends to be drawn with the same size when the number of sets grows, and tends to draw a grid. Finally, using linear algebra, we prove that this construction gives a simple Venn diagram for any number of sets.\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"3 1\",\"pages\":\"153-173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v8i1a8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v8i1a8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

维恩图用于显示有限数量的集合之间的所有关系。该领域最近的研究关注这些结构的数学方面,但不是针对图表的可读性。本文提出了一种绘制易于阅读的维恩图的新方法,当集合数量增加时,每个区域趋向于以相同的大小绘制,并且趋向于绘制网格。最后,利用线性代数证明了该构造给出了任意数量集合的简单维恩图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new drawing for simple Venn diagrams based on algebraic construction
Venn diagrams are used to display all relations between a finite number of sets. Recent researches in this domain concern the mathematical aspects of these constructions, but are not directed towards the readability of the diagram. This article presents a new way to draw easy-to-read Venn diagrams, in which each region tends to be drawn with the same size when the number of sets grows, and tends to draw a grid. Finally, using linear algebra, we prove that this construction gives a simple Venn diagram for any number of sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信