基于预测的超级页面友好的TLB设计

Misel-Myrto Papadopoulou, Xin Tong, André Seznec, Andreas Moshovos
{"title":"基于预测的超级页面友好的TLB设计","authors":"Misel-Myrto Papadopoulou, Xin Tong, André Seznec, Andreas Moshovos","doi":"10.1109/HPCA.2015.7056034","DOIUrl":null,"url":null,"abstract":"This work demonstrates that a set of commercial and scale-out applications exhibit significant use of superpages and thus suffer from the fixed and small superpage TLB structures of some modern core designs. Other processors better cope with superpages at the expense of using power-hungry and slow fully-associative TLBs. We consider alternate designs that allow all pages to freely share a single, power-efficient and fast set-associative TLB. We propose a prediction-guided multi-grain TLB design that uses a superpage prediction mechanism to avoid multiple lookups in the common case. In addition, we evaluate the previously proposed skewed TLB [1] which builds on principles similar to those used in skewed associative caches [2]. We enhance the original skewed TLB design by using page size prediction to increase its effective associativity. Our prediction-based multi-grain TLB design delivers more hits and is more power efficient than existing alternatives. The predictor uses a 32-byte prediction table indexed by base register values.","PeriodicalId":6593,"journal":{"name":"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)","volume":"41 1","pages":"210-222"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Prediction-based superpage-friendly TLB designs\",\"authors\":\"Misel-Myrto Papadopoulou, Xin Tong, André Seznec, Andreas Moshovos\",\"doi\":\"10.1109/HPCA.2015.7056034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates that a set of commercial and scale-out applications exhibit significant use of superpages and thus suffer from the fixed and small superpage TLB structures of some modern core designs. Other processors better cope with superpages at the expense of using power-hungry and slow fully-associative TLBs. We consider alternate designs that allow all pages to freely share a single, power-efficient and fast set-associative TLB. We propose a prediction-guided multi-grain TLB design that uses a superpage prediction mechanism to avoid multiple lookups in the common case. In addition, we evaluate the previously proposed skewed TLB [1] which builds on principles similar to those used in skewed associative caches [2]. We enhance the original skewed TLB design by using page size prediction to increase its effective associativity. Our prediction-based multi-grain TLB design delivers more hits and is more power efficient than existing alternatives. The predictor uses a 32-byte prediction table indexed by base register values.\",\"PeriodicalId\":6593,\"journal\":{\"name\":\"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"41 1\",\"pages\":\"210-222\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2015.7056034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2015.7056034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

这项工作表明,一组商业和向外扩展的应用程序大量使用超页,因此受到一些现代核心设计的固定和小型超页TLB结构的影响。其他处理器更好地处理超级页,代价是使用耗电且速度缓慢的全关联tlb。我们考虑另一种设计,允许所有页面自由地共享一个单一的、高效的、快速的集关联TLB。我们提出了一种预测引导的多粒度TLB设计,该设计使用超页面预测机制来避免常见情况下的多次查找。此外,我们评估了先前提出的倾斜TLB[1],它建立在与倾斜关联缓存[2]相似的原理之上。我们通过使用页面大小预测来增强原始倾斜TLB设计,以增加其有效的联想性。我们基于预测的多粒TLB设计提供了更多的命中,并且比现有的替代方案更节能。预测器使用一个由基寄存器值索引的32字节预测表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction-based superpage-friendly TLB designs
This work demonstrates that a set of commercial and scale-out applications exhibit significant use of superpages and thus suffer from the fixed and small superpage TLB structures of some modern core designs. Other processors better cope with superpages at the expense of using power-hungry and slow fully-associative TLBs. We consider alternate designs that allow all pages to freely share a single, power-efficient and fast set-associative TLB. We propose a prediction-guided multi-grain TLB design that uses a superpage prediction mechanism to avoid multiple lookups in the common case. In addition, we evaluate the previously proposed skewed TLB [1] which builds on principles similar to those used in skewed associative caches [2]. We enhance the original skewed TLB design by using page size prediction to increase its effective associativity. Our prediction-based multi-grain TLB design delivers more hits and is more power efficient than existing alternatives. The predictor uses a 32-byte prediction table indexed by base register values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信