SiNeRF:用于关节姿态估计和场景重建的正弦神经辐射场

Yitong Xia, Hao Tang, R. Timofte, L. Gool
{"title":"SiNeRF:用于关节姿态估计和场景重建的正弦神经辐射场","authors":"Yitong Xia, Hao Tang, R. Timofte, L. Gool","doi":"10.48550/arXiv.2210.04553","DOIUrl":null,"url":null,"abstract":"NeRFmm is the Neural Radiance Fields (NeRF) that deal with Joint Optimization tasks, i.e., reconstructing real-world scenes and registering camera parameters simultaneously. Despite NeRFmm producing precise scene synthesis and pose estimations, it still struggles to outperform the full-annotated baseline on challenging scenes. In this work, we identify that there exists a systematic sub-optimality in joint optimization and further identify multiple potential sources for it. To diminish the impacts of potential sources, we propose Sinusoidal Neural Radiance Fields (SiNeRF) that leverage sinusoidal activations for radiance mapping and a novel Mixed Region Sampling (MRS) for selecting ray batch efficiently. Quantitative and qualitative results show that compared to NeRFmm, SiNeRF achieves comprehensive significant improvements in image synthesis quality and pose estimation accuracy. Codes are available at https://github.com/yitongx/sinerf.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"15 1","pages":"131"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and Scene Reconstruction\",\"authors\":\"Yitong Xia, Hao Tang, R. Timofte, L. Gool\",\"doi\":\"10.48550/arXiv.2210.04553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NeRFmm is the Neural Radiance Fields (NeRF) that deal with Joint Optimization tasks, i.e., reconstructing real-world scenes and registering camera parameters simultaneously. Despite NeRFmm producing precise scene synthesis and pose estimations, it still struggles to outperform the full-annotated baseline on challenging scenes. In this work, we identify that there exists a systematic sub-optimality in joint optimization and further identify multiple potential sources for it. To diminish the impacts of potential sources, we propose Sinusoidal Neural Radiance Fields (SiNeRF) that leverage sinusoidal activations for radiance mapping and a novel Mixed Region Sampling (MRS) for selecting ray batch efficiently. Quantitative and qualitative results show that compared to NeRFmm, SiNeRF achieves comprehensive significant improvements in image synthesis quality and pose estimation accuracy. Codes are available at https://github.com/yitongx/sinerf.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"15 1\",\"pages\":\"131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.04553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.04553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

NeRFmm是神经辐射场(NeRF),它处理联合优化任务,即重建真实世界的场景并同时注册相机参数。尽管NeRFmm产生精确的场景合成和姿态估计,但在具有挑战性的场景中,它仍然难以超越完全注释的基线。在这项工作中,我们确定了在联合优化中存在系统的次最优性,并进一步确定了它的多个潜在来源。为了减少潜在光源的影响,我们提出了正弦神经辐射场(SiNeRF),利用正弦激活进行辐射映射,并提出了一种新的混合区域采样(MRS)来有效地选择射线批。定量和定性结果表明,与NeRFmm相比,SiNeRF在图像合成质量和姿态估计精度方面取得了全面的显著提高。代码可在https://github.com/yitongx/sinerf上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and Scene Reconstruction
NeRFmm is the Neural Radiance Fields (NeRF) that deal with Joint Optimization tasks, i.e., reconstructing real-world scenes and registering camera parameters simultaneously. Despite NeRFmm producing precise scene synthesis and pose estimations, it still struggles to outperform the full-annotated baseline on challenging scenes. In this work, we identify that there exists a systematic sub-optimality in joint optimization and further identify multiple potential sources for it. To diminish the impacts of potential sources, we propose Sinusoidal Neural Radiance Fields (SiNeRF) that leverage sinusoidal activations for radiance mapping and a novel Mixed Region Sampling (MRS) for selecting ray batch efficiently. Quantitative and qualitative results show that compared to NeRFmm, SiNeRF achieves comprehensive significant improvements in image synthesis quality and pose estimation accuracy. Codes are available at https://github.com/yitongx/sinerf.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信