{"title":"稀疏真实感图中的社区检测:改进贝特黑森算法","authors":"Lorenzo Dall'Amico, Romain Couillet","doi":"10.1109/ICASSP.2019.8683594","DOIUrl":null,"url":null,"abstract":"This article improves over the recently proposed Bethe Hessian matrix for community detection on sparse graphs, assuming here a more realistic setting where node degrees are inhomogeneous. We notably show that the parametrization proposed in the seminal work on the Bethe Hessian clustering can be ameliorated with positive consequences on correct classification rates. Extensive simulations support our claims.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"61 1","pages":"2942-2946"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Community Detection in Sparse Realistic Graphs: Improving the Bethe Hessian\",\"authors\":\"Lorenzo Dall'Amico, Romain Couillet\",\"doi\":\"10.1109/ICASSP.2019.8683594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article improves over the recently proposed Bethe Hessian matrix for community detection on sparse graphs, assuming here a more realistic setting where node degrees are inhomogeneous. We notably show that the parametrization proposed in the seminal work on the Bethe Hessian clustering can be ameliorated with positive consequences on correct classification rates. Extensive simulations support our claims.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"61 1\",\"pages\":\"2942-2946\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Community Detection in Sparse Realistic Graphs: Improving the Bethe Hessian
This article improves over the recently proposed Bethe Hessian matrix for community detection on sparse graphs, assuming here a more realistic setting where node degrees are inhomogeneous. We notably show that the parametrization proposed in the seminal work on the Bethe Hessian clustering can be ameliorated with positive consequences on correct classification rates. Extensive simulations support our claims.