不完全知识下相互依赖网络的级联故障控制

D. Z. Tootaghaj, N. Bartolini, Hana Khamfroush, T. L. Porta
{"title":"不完全知识下相互依赖网络的级联故障控制","authors":"D. Z. Tootaghaj, N. Bartolini, Hana Khamfroush, T. L. Porta","doi":"10.1109/SRDS.2017.14","DOIUrl":null,"url":null,"abstract":"Vulnerability due to inter-connectivity of multiple networks has been observed in many complex networks. Previous works mainly focused on robust network design and on recovery strategies after sporadic or massive failures in the case of complete knowledge of failure location. We focus on cascading failures involving the power grid and its communication network with consequent imprecision in damage assessment. We tackle the problem of mitigating the ongoing cascading failure and providing a recovery strategy. We propose a failure mitigation strategy in two steps: 1) Once a cascading failure is detected, we limit further propagation by re-distributing the generator and load's power. 2) We formulate a recovery plan to maximize the total amount of power delivered to the demand loads during the recovery intervention. Our approach to cope with insufficient knowledge of damage locations is based on the use of a new algorithm to determine consistent failure sets (CFS). We show that, given knowledge of the system state before the disruption, the CFS algorithm can find all consistent sets of unknown failures in polynomial time provided that, each connected component of the disrupted graph has at least one line whose failure status is known to the controller.","PeriodicalId":6475,"journal":{"name":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","volume":"22 1","pages":"54-63"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Controlling Cascading Failures in Interdependent Networks under Incomplete Knowledge\",\"authors\":\"D. Z. Tootaghaj, N. Bartolini, Hana Khamfroush, T. L. Porta\",\"doi\":\"10.1109/SRDS.2017.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vulnerability due to inter-connectivity of multiple networks has been observed in many complex networks. Previous works mainly focused on robust network design and on recovery strategies after sporadic or massive failures in the case of complete knowledge of failure location. We focus on cascading failures involving the power grid and its communication network with consequent imprecision in damage assessment. We tackle the problem of mitigating the ongoing cascading failure and providing a recovery strategy. We propose a failure mitigation strategy in two steps: 1) Once a cascading failure is detected, we limit further propagation by re-distributing the generator and load's power. 2) We formulate a recovery plan to maximize the total amount of power delivered to the demand loads during the recovery intervention. Our approach to cope with insufficient knowledge of damage locations is based on the use of a new algorithm to determine consistent failure sets (CFS). We show that, given knowledge of the system state before the disruption, the CFS algorithm can find all consistent sets of unknown failures in polynomial time provided that, each connected component of the disrupted graph has at least one line whose failure status is known to the controller.\",\"PeriodicalId\":6475,\"journal\":{\"name\":\"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)\",\"volume\":\"22 1\",\"pages\":\"54-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2017.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2017.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在许多复杂的网络中,由于多个网络的互联性而导致的漏洞已经被观察到。以往的工作主要集中在鲁棒网络设计以及在完全了解故障位置的情况下,零星或大规模故障后的恢复策略。我们的重点是涉及电网及其通信网络的级联故障,由此导致的损害评估不精确。我们解决了减轻正在发生的级联故障并提供恢复策略的问题。我们提出了一个分两步的故障缓解策略:1)一旦检测到级联故障,我们通过重新分配发电机和负载的功率来限制进一步的传播。2)制定恢复方案,使恢复干预期间向需求负荷输送的总功率最大化。我们的方法是基于使用一种新的算法来确定一致故障集(CFS)来处理对损伤位置的不充分了解。我们证明,在已知中断前的系统状态的情况下,CFS算法可以在多项式时间内找到所有未知故障的一致集,前提是中断图的每个连接分量至少有一条线,其故障状态为控制器所知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling Cascading Failures in Interdependent Networks under Incomplete Knowledge
Vulnerability due to inter-connectivity of multiple networks has been observed in many complex networks. Previous works mainly focused on robust network design and on recovery strategies after sporadic or massive failures in the case of complete knowledge of failure location. We focus on cascading failures involving the power grid and its communication network with consequent imprecision in damage assessment. We tackle the problem of mitigating the ongoing cascading failure and providing a recovery strategy. We propose a failure mitigation strategy in two steps: 1) Once a cascading failure is detected, we limit further propagation by re-distributing the generator and load's power. 2) We formulate a recovery plan to maximize the total amount of power delivered to the demand loads during the recovery intervention. Our approach to cope with insufficient knowledge of damage locations is based on the use of a new algorithm to determine consistent failure sets (CFS). We show that, given knowledge of the system state before the disruption, the CFS algorithm can find all consistent sets of unknown failures in polynomial time provided that, each connected component of the disrupted graph has at least one line whose failure status is known to the controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信