{"title":"$^{24}\\textrm{Mg}$ $4^+_1$和$4^+_2$态质子和α非弹性散射的微观耦合通道计算","authors":"Y. Kanada-En’yo, K. Ogata","doi":"10.1093/PTEP/PTAB029","DOIUrl":null,"url":null,"abstract":"Background: The triaxial and hexadecapole deformations of the K=0+ and K=2+ bands of 24Mg have been investigated by the inelastic scatterings of various probes, including electrons, protons, and alpha particles, for a prolonged time. However, it has been challenging to explain the unique properties of the scatterings observed for the $4^+_1$ state through reaction calculations. Purpose: To investigate the structure and transition properties of the K=0+ and K=2+ bands of 24Mg employing the microscopic structure and reaction calculations via inelastic proton and alpha-scattering. Particularly, the E4 transitions to the $4^+_1$ and $4^+_2$ states were reexamined. Method: The structure of 24Mg was calculated employing the variation after the parity and total-angular momentum projections in the framework of the antisymmetrized molecular dynamics(AMD). The inelastic proton and alpha reactions were calculated by the microscopic coupled-channel (MCC) approach by folding the Melbourne g-matrix NN interaction with the AMD densities of 24Mg. Results: Reasonable results were obtained on the properties of the structure, including the energy spectra and E2 and E4 transitions of the K=0+ and K=2+ bands owing to the enhanced collectivity of triaxial deformation. The MCC+AMD calculation successfully reproduced the angular distributions of the $4^+_1$ and $4^+_2$ cross sections of proton scattering at incident energies of $E_p$=40--100MeV and alpha-scattering at $E_\\alpha$=100--400MeV. Conclusions: This is the first microscopic calculation that described the unique properties of the $0^+_1\\to 4^+_1$ transition. In the inelastic scattering to the $4^+_1$ state, the dominant two-step process of the $0^+_1\\to 2^+_1\\to 4^+_1$ transitions and the deconstructive interference is the weak one-step process were essential.","PeriodicalId":8463,"journal":{"name":"arXiv: Nuclear Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Microscopic coupled-channel calculation of proton and alpha inelastic scattering to the $4^+_1$ and $4^+_2$ states of $^{24}\\\\textrm{Mg}$\",\"authors\":\"Y. Kanada-En’yo, K. Ogata\",\"doi\":\"10.1093/PTEP/PTAB029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The triaxial and hexadecapole deformations of the K=0+ and K=2+ bands of 24Mg have been investigated by the inelastic scatterings of various probes, including electrons, protons, and alpha particles, for a prolonged time. However, it has been challenging to explain the unique properties of the scatterings observed for the $4^+_1$ state through reaction calculations. Purpose: To investigate the structure and transition properties of the K=0+ and K=2+ bands of 24Mg employing the microscopic structure and reaction calculations via inelastic proton and alpha-scattering. Particularly, the E4 transitions to the $4^+_1$ and $4^+_2$ states were reexamined. Method: The structure of 24Mg was calculated employing the variation after the parity and total-angular momentum projections in the framework of the antisymmetrized molecular dynamics(AMD). The inelastic proton and alpha reactions were calculated by the microscopic coupled-channel (MCC) approach by folding the Melbourne g-matrix NN interaction with the AMD densities of 24Mg. Results: Reasonable results were obtained on the properties of the structure, including the energy spectra and E2 and E4 transitions of the K=0+ and K=2+ bands owing to the enhanced collectivity of triaxial deformation. The MCC+AMD calculation successfully reproduced the angular distributions of the $4^+_1$ and $4^+_2$ cross sections of proton scattering at incident energies of $E_p$=40--100MeV and alpha-scattering at $E_\\\\alpha$=100--400MeV. Conclusions: This is the first microscopic calculation that described the unique properties of the $0^+_1\\\\to 4^+_1$ transition. In the inelastic scattering to the $4^+_1$ state, the dominant two-step process of the $0^+_1\\\\to 2^+_1\\\\to 4^+_1$ transitions and the deconstructive interference is the weak one-step process were essential.\",\"PeriodicalId\":8463,\"journal\":{\"name\":\"arXiv: Nuclear Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Nuclear Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/PTEP/PTAB029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/PTEP/PTAB029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microscopic coupled-channel calculation of proton and alpha inelastic scattering to the $4^+_1$ and $4^+_2$ states of $^{24}\textrm{Mg}$
Background: The triaxial and hexadecapole deformations of the K=0+ and K=2+ bands of 24Mg have been investigated by the inelastic scatterings of various probes, including electrons, protons, and alpha particles, for a prolonged time. However, it has been challenging to explain the unique properties of the scatterings observed for the $4^+_1$ state through reaction calculations. Purpose: To investigate the structure and transition properties of the K=0+ and K=2+ bands of 24Mg employing the microscopic structure and reaction calculations via inelastic proton and alpha-scattering. Particularly, the E4 transitions to the $4^+_1$ and $4^+_2$ states were reexamined. Method: The structure of 24Mg was calculated employing the variation after the parity and total-angular momentum projections in the framework of the antisymmetrized molecular dynamics(AMD). The inelastic proton and alpha reactions were calculated by the microscopic coupled-channel (MCC) approach by folding the Melbourne g-matrix NN interaction with the AMD densities of 24Mg. Results: Reasonable results were obtained on the properties of the structure, including the energy spectra and E2 and E4 transitions of the K=0+ and K=2+ bands owing to the enhanced collectivity of triaxial deformation. The MCC+AMD calculation successfully reproduced the angular distributions of the $4^+_1$ and $4^+_2$ cross sections of proton scattering at incident energies of $E_p$=40--100MeV and alpha-scattering at $E_\alpha$=100--400MeV. Conclusions: This is the first microscopic calculation that described the unique properties of the $0^+_1\to 4^+_1$ transition. In the inelastic scattering to the $4^+_1$ state, the dominant two-step process of the $0^+_1\to 2^+_1\to 4^+_1$ transitions and the deconstructive interference is the weak one-step process were essential.