基于二元分布Huang-Kotz Morgenstern的上k记录值伴随物的加权熵

IF 0.7 Q2 MATHEMATICS
M. Nagy, Y. Tashkandy
{"title":"基于二元分布Huang-Kotz Morgenstern的上k记录值伴随物的加权熵","authors":"M. Nagy, Y. Tashkandy","doi":"10.1155/2023/3423690","DOIUrl":null,"url":null,"abstract":"In this paper, the marginal distribution of concomitants of \n \n k\n −\n \n record values (CKR) based on the Huang–Kotz Farlie–Gumbel–Morgenstern (HK-FGM) family of bivariate distributions is derived. In addition, we obtained the joint distribution of CKR for this family. Also, we obtained the hazard rate, reversed hazard rate, and residual life functions of CKR using the HK-FGM family. The weighted extropy and the weighted cumulative past extropy (WCPJ) are acquired for CKR under the HK-FGM family. In addition, we look into the issue of estimating the WCPJ by combining the empirical method with the concurrent use of KR in the HK-FGM family. Finally, we analyzed real-world data for illustration purposes, and the outcomes are rather striking.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"24 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Extropy for Concomitants of Upper k-Record Values Based on Huang–Kotz Morgenstern of Bivariate Distribution\",\"authors\":\"M. Nagy, Y. Tashkandy\",\"doi\":\"10.1155/2023/3423690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the marginal distribution of concomitants of \\n \\n k\\n −\\n \\n record values (CKR) based on the Huang–Kotz Farlie–Gumbel–Morgenstern (HK-FGM) family of bivariate distributions is derived. In addition, we obtained the joint distribution of CKR for this family. Also, we obtained the hazard rate, reversed hazard rate, and residual life functions of CKR using the HK-FGM family. The weighted extropy and the weighted cumulative past extropy (WCPJ) are acquired for CKR under the HK-FGM family. In addition, we look into the issue of estimating the WCPJ by combining the empirical method with the concurrent use of KR in the HK-FGM family. Finally, we analyzed real-world data for illustration purposes, and the outcomes are rather striking.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3423690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3423690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文基于二元分布族(HK-FGM),导出了k -记录值(CKR)伴随子的边际分布。此外,我们还获得了该家族CKR的联合分布。此外,我们还利用HK-FGM家族获得了CKR的危害率、反向危害率和剩余寿命函数。在HK-FGM家族下,获得CKR的加权外向性和加权累积过去外向性(WCPJ)。此外,我们还研究了将经验方法与同时使用KR的HK-FGM家族相结合的WCPJ估计问题。最后,为了说明目的,我们分析了真实世界的数据,结果相当惊人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Extropy for Concomitants of Upper k-Record Values Based on Huang–Kotz Morgenstern of Bivariate Distribution
In this paper, the marginal distribution of concomitants of k − record values (CKR) based on the Huang–Kotz Farlie–Gumbel–Morgenstern (HK-FGM) family of bivariate distributions is derived. In addition, we obtained the joint distribution of CKR for this family. Also, we obtained the hazard rate, reversed hazard rate, and residual life functions of CKR using the HK-FGM family. The weighted extropy and the weighted cumulative past extropy (WCPJ) are acquired for CKR under the HK-FGM family. In addition, we look into the issue of estimating the WCPJ by combining the empirical method with the concurrent use of KR in the HK-FGM family. Finally, we analyzed real-world data for illustration purposes, and the outcomes are rather striking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信