{"title":"有效的最优变形估计的分层数据驱动下降","authors":"Yuandong Tian, S. Narasimhan","doi":"10.1109/ICCV.2013.284","DOIUrl":null,"url":null,"abstract":"Real-world surfaces such as clothing, water and human body deform in complex ways. The image distortions observed are high-dimensional and non-linear, making it hard to estimate these deformations accurately. The recent data-driven descent approach applies Nearest Neighbor estimators iteratively on a particular distribution of training samples to obtain a globally optimal and dense deformation field between a template and a distorted image. In this work, we develop a hierarchical structure for the Nearest Neighbor estimators, each of which can have only a local image support. We demonstrate in both theory and practice that this algorithm has several advantages over the non-hierarchical version: it guarantees global optimality with significantly fewer training samples, is several orders faster, provides a metric to decide whether a given image is ``hard'' (or ``easy'') requiring more (or less) samples, and can handle more complex scenes that include both global motion and local deformation. The proposed algorithm successfully tracks a broad range of non-rigid scenes including water, clothing, and medical images, and compares favorably against several other deformation estimation and tracking approaches that do not provide optimality guarantees.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"22 1","pages":"2288-2295"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hierarchical Data-Driven Descent for Efficient Optimal Deformation Estimation\",\"authors\":\"Yuandong Tian, S. Narasimhan\",\"doi\":\"10.1109/ICCV.2013.284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-world surfaces such as clothing, water and human body deform in complex ways. The image distortions observed are high-dimensional and non-linear, making it hard to estimate these deformations accurately. The recent data-driven descent approach applies Nearest Neighbor estimators iteratively on a particular distribution of training samples to obtain a globally optimal and dense deformation field between a template and a distorted image. In this work, we develop a hierarchical structure for the Nearest Neighbor estimators, each of which can have only a local image support. We demonstrate in both theory and practice that this algorithm has several advantages over the non-hierarchical version: it guarantees global optimality with significantly fewer training samples, is several orders faster, provides a metric to decide whether a given image is ``hard'' (or ``easy'') requiring more (or less) samples, and can handle more complex scenes that include both global motion and local deformation. The proposed algorithm successfully tracks a broad range of non-rigid scenes including water, clothing, and medical images, and compares favorably against several other deformation estimation and tracking approaches that do not provide optimality guarantees.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"22 1\",\"pages\":\"2288-2295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical Data-Driven Descent for Efficient Optimal Deformation Estimation
Real-world surfaces such as clothing, water and human body deform in complex ways. The image distortions observed are high-dimensional and non-linear, making it hard to estimate these deformations accurately. The recent data-driven descent approach applies Nearest Neighbor estimators iteratively on a particular distribution of training samples to obtain a globally optimal and dense deformation field between a template and a distorted image. In this work, we develop a hierarchical structure for the Nearest Neighbor estimators, each of which can have only a local image support. We demonstrate in both theory and practice that this algorithm has several advantages over the non-hierarchical version: it guarantees global optimality with significantly fewer training samples, is several orders faster, provides a metric to decide whether a given image is ``hard'' (or ``easy'') requiring more (or less) samples, and can handle more complex scenes that include both global motion and local deformation. The proposed algorithm successfully tracks a broad range of non-rigid scenes including water, clothing, and medical images, and compares favorably against several other deformation estimation and tracking approaches that do not provide optimality guarantees.