周期积分的代数微分方程

IF 0.4 Q4 MATHEMATICS
D. Barlet
{"title":"周期积分的代数微分方程","authors":"D. Barlet","doi":"10.5427/jsing.2022.25c","DOIUrl":null,"url":null,"abstract":"We explain that in the study of the asymptotic expansion at the origin of a period integral like ∫ γz ω/df or of a hermitian period like ∫ f=s ρ.ω/df ∧ ω′/df the computation of the Bernstein polynomial of the ”fresco” (filtered differential equation) associated to the pair of germs (f, ω) gives a better control than the computation of the Bernstein polynomial of the full Brieskorn module of the germ of f at the origin. Moreover, it is easier to compute as it has a better functoriality and smaller degree. We illustrate this in the case where f ∈ C[x0, . . . , xn] has n+ 2 monomials and is not quasi-homogeneous, by giving an explicite simple algorithm to produce a multiple of the Bernstein polynomial when ω is a monomial holomorphic volume form. Several concrete examples are given. AMS Classification. 32 S 2532 S 40","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algebraic differential equations of period-integrals\",\"authors\":\"D. Barlet\",\"doi\":\"10.5427/jsing.2022.25c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explain that in the study of the asymptotic expansion at the origin of a period integral like ∫ γz ω/df or of a hermitian period like ∫ f=s ρ.ω/df ∧ ω′/df the computation of the Bernstein polynomial of the ”fresco” (filtered differential equation) associated to the pair of germs (f, ω) gives a better control than the computation of the Bernstein polynomial of the full Brieskorn module of the germ of f at the origin. Moreover, it is easier to compute as it has a better functoriality and smaller degree. We illustrate this in the case where f ∈ C[x0, . . . , xn] has n+ 2 monomials and is not quasi-homogeneous, by giving an explicite simple algorithm to produce a multiple of the Bernstein polynomial when ω is a monomial holomorphic volume form. Several concrete examples are given. AMS Classification. 32 S 2532 S 40\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2022.25c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2022.25c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们在研究像∫f=s ρ这样的厄米周期积分∫γz ω/df在原点的渐近展开中解释了这一点。ω/df∧ω ' /df计算与胚芽(f, ω)相关的fresco(滤波微分方程)的Bernstein多项式比计算f胚芽在原点的全Brieskorn模的Bernstein多项式具有更好的控制效果。此外,它具有更好的功能和更小的度,更容易计算。我们在f∈C[x0,…]的情况下说明这一点。, xn]有n+ 2个单项式且非拟齐次,给出了当ω为单项式全纯体积形式时产生Bernstein多项式倍数的显式简单算法。给出了几个具体的例子。AMS分类:32s2532s40
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic differential equations of period-integrals
We explain that in the study of the asymptotic expansion at the origin of a period integral like ∫ γz ω/df or of a hermitian period like ∫ f=s ρ.ω/df ∧ ω′/df the computation of the Bernstein polynomial of the ”fresco” (filtered differential equation) associated to the pair of germs (f, ω) gives a better control than the computation of the Bernstein polynomial of the full Brieskorn module of the germ of f at the origin. Moreover, it is easier to compute as it has a better functoriality and smaller degree. We illustrate this in the case where f ∈ C[x0, . . . , xn] has n+ 2 monomials and is not quasi-homogeneous, by giving an explicite simple algorithm to produce a multiple of the Bernstein polynomial when ω is a monomial holomorphic volume form. Several concrete examples are given. AMS Classification. 32 S 2532 S 40
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信