氦新星V445 Puppis的射电光曲线和成像显示了7年的同步加速器发射

M. M. Nyamai, L. Chomiuk, V. Ribeiro, P. Woudt, J. Strader, K. Sokolovsky, K. Sokolovsky
{"title":"氦新星V445 Puppis的射电光曲线和成像显示了7年的同步加速器发射","authors":"M. M. Nyamai, L. Chomiuk, V. Ribeiro, P. Woudt, J. Strader, K. Sokolovsky, K. Sokolovsky","doi":"10.1093/mnras/staa3712","DOIUrl":null,"url":null,"abstract":"V445 Puppis is the only helium nova observed to date; its eruption in late 2000 showed high velocities up to 8500 km/s and a remarkable bipolar morphology cinched by an equatorial dust disc. Here we present multi-frequency radio observations of V445 Pup obtained with the Very Large Array (VLA) spanning 1.5 to 43.3 GHz, and between 2001 January and 2008 March (days 89 to 2700 after eruption). The radio light curve is dominated by synchrotron emission over these seven years, and shows four distinct radio flares. Resolved radio images obtained in the VLA A configuration show that the synchrotron emission hugs the equatorial disc, and comparisons to near-IR images of the nova clearly demonstrate that it is the densest ejecta, not the fastest ejecta, that are the sites of the synchrotron emission in V445 Pup. The data are consistent with a model where the synchrotron emission is produced by a wind from the white dwarf impacting the dense equatorial disc, resulting in shocks and particle acceleration. The individual synchrotron flares may be associated with density enhancements in the equatorial disc and/ or velocity variations in the wind from the white dwarf. This overall scenario is similar to a common picture of shock production in hydrogen-rich classical novae, but V445 Pup is remarkable in that these shocks persist for almost a decade, much longer than the weeks or months for which shocks are typically observed in classical novae.","PeriodicalId":8493,"journal":{"name":"arXiv: Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Radio light curves and imaging of the helium nova V445 Puppis reveal seven years of synchrotron emission\",\"authors\":\"M. M. Nyamai, L. Chomiuk, V. Ribeiro, P. Woudt, J. Strader, K. Sokolovsky, K. Sokolovsky\",\"doi\":\"10.1093/mnras/staa3712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"V445 Puppis is the only helium nova observed to date; its eruption in late 2000 showed high velocities up to 8500 km/s and a remarkable bipolar morphology cinched by an equatorial dust disc. Here we present multi-frequency radio observations of V445 Pup obtained with the Very Large Array (VLA) spanning 1.5 to 43.3 GHz, and between 2001 January and 2008 March (days 89 to 2700 after eruption). The radio light curve is dominated by synchrotron emission over these seven years, and shows four distinct radio flares. Resolved radio images obtained in the VLA A configuration show that the synchrotron emission hugs the equatorial disc, and comparisons to near-IR images of the nova clearly demonstrate that it is the densest ejecta, not the fastest ejecta, that are the sites of the synchrotron emission in V445 Pup. The data are consistent with a model where the synchrotron emission is produced by a wind from the white dwarf impacting the dense equatorial disc, resulting in shocks and particle acceleration. The individual synchrotron flares may be associated with density enhancements in the equatorial disc and/ or velocity variations in the wind from the white dwarf. This overall scenario is similar to a common picture of shock production in hydrogen-rich classical novae, but V445 Pup is remarkable in that these shocks persist for almost a decade, much longer than the weeks or months for which shocks are typically observed in classical novae.\",\"PeriodicalId\":8493,\"journal\":{\"name\":\"arXiv: Solar and Stellar Astrophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Solar and Stellar Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/staa3712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

Puppis V445是迄今为止观测到的唯一一颗氦新星;它在2000年末的喷发显示出高达8500千米/秒的高速和由赤道尘埃盘束缚的显著的两极形态。在这里,我们展示了V445 Pup在2001年1月至2008年3月(喷发后89天至2700天)期间,用甚大阵列(VLA)在1.5至43.3 GHz范围内获得的多频无线电观测结果。在这七年中,射电光曲线主要是由同步加速器发射,并显示出四个不同的射电耀斑。在VLA A配置中获得的分辨射电图像显示,同步辐射围绕赤道盘,与新星的近红外图像比较清楚地表明,V445 Pup中同步辐射的位置是密度最大的喷射物,而不是速度最快的喷射物。这些数据与一个模型一致,即同步辐射是由白矮星吹来的风撞击致密的赤道圆盘产生的,导致了冲击和粒子加速。单个同步加速器耀斑可能与赤道盘的密度增强和/或白矮星吹来的风的速度变化有关。这一总体情况类似于富氢经典新星中激波产生的常见图景,但V445 Pup的显著之处在于,这些激波持续了近十年,远远超过了经典新星中通常观察到的几周或几个月的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radio light curves and imaging of the helium nova V445 Puppis reveal seven years of synchrotron emission
V445 Puppis is the only helium nova observed to date; its eruption in late 2000 showed high velocities up to 8500 km/s and a remarkable bipolar morphology cinched by an equatorial dust disc. Here we present multi-frequency radio observations of V445 Pup obtained with the Very Large Array (VLA) spanning 1.5 to 43.3 GHz, and between 2001 January and 2008 March (days 89 to 2700 after eruption). The radio light curve is dominated by synchrotron emission over these seven years, and shows four distinct radio flares. Resolved radio images obtained in the VLA A configuration show that the synchrotron emission hugs the equatorial disc, and comparisons to near-IR images of the nova clearly demonstrate that it is the densest ejecta, not the fastest ejecta, that are the sites of the synchrotron emission in V445 Pup. The data are consistent with a model where the synchrotron emission is produced by a wind from the white dwarf impacting the dense equatorial disc, resulting in shocks and particle acceleration. The individual synchrotron flares may be associated with density enhancements in the equatorial disc and/ or velocity variations in the wind from the white dwarf. This overall scenario is similar to a common picture of shock production in hydrogen-rich classical novae, but V445 Pup is remarkable in that these shocks persist for almost a decade, much longer than the weeks or months for which shocks are typically observed in classical novae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信