{"title":"利用地理空间大数据绘制城市基本土地利用类别(EULUC):进展、挑战和机遇","authors":"Bin Chen, Bing Xu, P. Gong","doi":"10.1080/20964471.2021.1939243","DOIUrl":null,"url":null,"abstract":"ABSTRACT Urban land use information that reflects socio-economic functions and human activities is critically essential for urban planning, landscape design, environmental management, health promotion, and biodiversity conservation. Land-use maps outlining the distribution, pattern, and composition of essential urban land use categories (EULUC) have facilitated a wide spectrum of applications and further triggered new opportunities in urban studies. New and improved Earth observations, algorithms, and advanced products for extracting thematic urban information, in association with emerging social sensing big data and auxiliary crowdsourcing datasets, all together offer great potentials to mapping fine-resolution EULUC from regional to global scales. Here we review the advances of EULUC mapping research and practices in terms of their data, methods, and applications. Based on the historical retrospect, we summarize the challenges and limitations of current EULUC studies regarding sample collection, mixed land use problem, data and model generalization, and large-scale mapping efforts. Finally, we propose and discuss future opportunities, including cross-scale mapping, optimal integration of multi-source features, global sample libraries from crowdsourcing approaches, advanced machine learning and ensembled classification strategy, open portals for data visualization and sharing, multi-temporal mapping of EULUC change, and implications in urban environmental studies, to facilitate multi-scale fine-resolution EULUC mapping research.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"27 1","pages":"410 - 441"},"PeriodicalIF":4.2000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Mapping essential urban land use categories (EULUC) using geospatial big data: Progress, challenges, and opportunities\",\"authors\":\"Bin Chen, Bing Xu, P. Gong\",\"doi\":\"10.1080/20964471.2021.1939243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Urban land use information that reflects socio-economic functions and human activities is critically essential for urban planning, landscape design, environmental management, health promotion, and biodiversity conservation. Land-use maps outlining the distribution, pattern, and composition of essential urban land use categories (EULUC) have facilitated a wide spectrum of applications and further triggered new opportunities in urban studies. New and improved Earth observations, algorithms, and advanced products for extracting thematic urban information, in association with emerging social sensing big data and auxiliary crowdsourcing datasets, all together offer great potentials to mapping fine-resolution EULUC from regional to global scales. Here we review the advances of EULUC mapping research and practices in terms of their data, methods, and applications. Based on the historical retrospect, we summarize the challenges and limitations of current EULUC studies regarding sample collection, mixed land use problem, data and model generalization, and large-scale mapping efforts. Finally, we propose and discuss future opportunities, including cross-scale mapping, optimal integration of multi-source features, global sample libraries from crowdsourcing approaches, advanced machine learning and ensembled classification strategy, open portals for data visualization and sharing, multi-temporal mapping of EULUC change, and implications in urban environmental studies, to facilitate multi-scale fine-resolution EULUC mapping research.\",\"PeriodicalId\":8765,\"journal\":{\"name\":\"Big Earth Data\",\"volume\":\"27 1\",\"pages\":\"410 - 441\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Earth Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/20964471.2021.1939243\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2021.1939243","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Mapping essential urban land use categories (EULUC) using geospatial big data: Progress, challenges, and opportunities
ABSTRACT Urban land use information that reflects socio-economic functions and human activities is critically essential for urban planning, landscape design, environmental management, health promotion, and biodiversity conservation. Land-use maps outlining the distribution, pattern, and composition of essential urban land use categories (EULUC) have facilitated a wide spectrum of applications and further triggered new opportunities in urban studies. New and improved Earth observations, algorithms, and advanced products for extracting thematic urban information, in association with emerging social sensing big data and auxiliary crowdsourcing datasets, all together offer great potentials to mapping fine-resolution EULUC from regional to global scales. Here we review the advances of EULUC mapping research and practices in terms of their data, methods, and applications. Based on the historical retrospect, we summarize the challenges and limitations of current EULUC studies regarding sample collection, mixed land use problem, data and model generalization, and large-scale mapping efforts. Finally, we propose and discuss future opportunities, including cross-scale mapping, optimal integration of multi-source features, global sample libraries from crowdsourcing approaches, advanced machine learning and ensembled classification strategy, open portals for data visualization and sharing, multi-temporal mapping of EULUC change, and implications in urban environmental studies, to facilitate multi-scale fine-resolution EULUC mapping research.