一种改进的聚类方法

O. Kettani, F. Ramdani
{"title":"一种改进的聚类方法","authors":"O. Kettani, F. Ramdani","doi":"10.5120/IJAIS2017451689","DOIUrl":null,"url":null,"abstract":"Clustering is a common and useful exploratory task widely used in Data mining. Among the many existing clustering algorithms, the Agglomerative Clustering Method (ACM) introduced by the authors suffers from an obvious drawback: its sensitivity to data ordering. To overcome this issue, we propose in this paper to initialize the ACM by using the KKZ seed algorithm. The proposed approach (called KKZ_ACM) has a lower computational time complexity than the famous kmeans algorithm. We evaluated its performance by applying on various benchmark datasets and compare with ACM, kmeans++ and KKZ_ k-means. Our performance studies have demonstrated that the proposed approach is effective in producing consistent clustering results in term of average Silhouette index. General Terms Data mining, Algorithms","PeriodicalId":92376,"journal":{"name":"International journal of applied information systems","volume":"131 1","pages":"16-23"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Agglomerative Clustering Method\",\"authors\":\"O. Kettani, F. Ramdani\",\"doi\":\"10.5120/IJAIS2017451689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is a common and useful exploratory task widely used in Data mining. Among the many existing clustering algorithms, the Agglomerative Clustering Method (ACM) introduced by the authors suffers from an obvious drawback: its sensitivity to data ordering. To overcome this issue, we propose in this paper to initialize the ACM by using the KKZ seed algorithm. The proposed approach (called KKZ_ACM) has a lower computational time complexity than the famous kmeans algorithm. We evaluated its performance by applying on various benchmark datasets and compare with ACM, kmeans++ and KKZ_ k-means. Our performance studies have demonstrated that the proposed approach is effective in producing consistent clustering results in term of average Silhouette index. General Terms Data mining, Algorithms\",\"PeriodicalId\":92376,\"journal\":{\"name\":\"International journal of applied information systems\",\"volume\":\"131 1\",\"pages\":\"16-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied information systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5120/IJAIS2017451689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied information systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5120/IJAIS2017451689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类是数据挖掘中广泛使用的一种常见而有用的探索性任务。在现有的众多聚类算法中,本文介绍的聚类方法(Agglomerative clustering Method, ACM)有一个明显的缺点:对数据排序的敏感性。为了克服这一问题,本文提出使用KKZ种子算法初始化ACM。所提出的方法(称为KKZ_ACM)具有比著名的kmeans算法更低的计算时间复杂度。我们通过应用于各种基准数据集来评估其性能,并与ACM、kmeans++和KKZ_ k-means进行比较。我们的性能研究表明,所提出的方法在平均廓形指数方面产生一致的聚类结果是有效的。通用术语数据挖掘,算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Agglomerative Clustering Method
Clustering is a common and useful exploratory task widely used in Data mining. Among the many existing clustering algorithms, the Agglomerative Clustering Method (ACM) introduced by the authors suffers from an obvious drawback: its sensitivity to data ordering. To overcome this issue, we propose in this paper to initialize the ACM by using the KKZ seed algorithm. The proposed approach (called KKZ_ACM) has a lower computational time complexity than the famous kmeans algorithm. We evaluated its performance by applying on various benchmark datasets and compare with ACM, kmeans++ and KKZ_ k-means. Our performance studies have demonstrated that the proposed approach is effective in producing consistent clustering results in term of average Silhouette index. General Terms Data mining, Algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信