多元β矩阵隐根的边际分布

A. W. Davis
{"title":"多元β矩阵隐根的边际分布","authors":"A. W. Davis","doi":"10.1214/AOMS/1177692399","DOIUrl":null,"url":null,"abstract":"On the marginal distributions of the latent roots of the multivariate beta matrix The marginal distributions of the latent roots of the multivariate beta matrix are shown to constitute a complete system of solutions of an ordinary differential equation (d.e.), which is related to the author's d.e. 's for Rotelling's generalized T 2 and Pillai's V(m) statistics. Similar results are o given for the latent roots of the multivariate F and Wishart matrices (E=I). Pillai's approximations to the distributions of the largest and smallest roots are interpreted as exact solutions, the contributions of higher order solutions being neglected. m ~(q-m-l) m ~(n-m-l) The marginal distributions of the individual £, have been investigated by ~ (1) (2) On the marginal distributions of the latent roots of the multivariate beta mattix* q,n ~ m. The latent roots £1 > • • • > £m > 0 of the multivariate beta matrix B = S(S+T)-l are well known to have the joint density function","PeriodicalId":50764,"journal":{"name":"Annals of Mathematical Statistics","volume":"23 1","pages":"1664-1670"},"PeriodicalIF":0.0000,"publicationDate":"1972-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"On the Marginal Distributions of the Latent Roots of the Multivariate Beta Matrix\",\"authors\":\"A. W. Davis\",\"doi\":\"10.1214/AOMS/1177692399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the marginal distributions of the latent roots of the multivariate beta matrix The marginal distributions of the latent roots of the multivariate beta matrix are shown to constitute a complete system of solutions of an ordinary differential equation (d.e.), which is related to the author's d.e. 's for Rotelling's generalized T 2 and Pillai's V(m) statistics. Similar results are o given for the latent roots of the multivariate F and Wishart matrices (E=I). Pillai's approximations to the distributions of the largest and smallest roots are interpreted as exact solutions, the contributions of higher order solutions being neglected. m ~(q-m-l) m ~(n-m-l) The marginal distributions of the individual £, have been investigated by ~ (1) (2) On the marginal distributions of the latent roots of the multivariate beta mattix* q,n ~ m. The latent roots £1 > • • • > £m > 0 of the multivariate beta matrix B = S(S+T)-l are well known to have the joint density function\",\"PeriodicalId\":50764,\"journal\":{\"name\":\"Annals of Mathematical Statistics\",\"volume\":\"23 1\",\"pages\":\"1664-1670\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/AOMS/1177692399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/AOMS/1177692399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

关于多元β矩阵的隐根的边际分布证明了多元β矩阵的隐根的边际分布构成了一个常微分方程的完整解系,这与作者的微分方程有关。Rotelling的广义T 2和Pillai的V(m)统计量。对于多元F和Wishart矩阵(E=I)的隐根,也给出了类似的结果。皮莱对最大和最小根分布的近似被解释为精确解,高阶解的贡献被忽略。m ~(q-m-l) m ~(n-m-l)通过~(1)(2)对多元β矩阵* q,n ~ m的潜根的边际分布进行了研究。多元β矩阵B = S(S+T)-l的潜根£1 >•••>£m >众所周知具有联合密度函数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Marginal Distributions of the Latent Roots of the Multivariate Beta Matrix
On the marginal distributions of the latent roots of the multivariate beta matrix The marginal distributions of the latent roots of the multivariate beta matrix are shown to constitute a complete system of solutions of an ordinary differential equation (d.e.), which is related to the author's d.e. 's for Rotelling's generalized T 2 and Pillai's V(m) statistics. Similar results are o given for the latent roots of the multivariate F and Wishart matrices (E=I). Pillai's approximations to the distributions of the largest and smallest roots are interpreted as exact solutions, the contributions of higher order solutions being neglected. m ~(q-m-l) m ~(n-m-l) The marginal distributions of the individual £, have been investigated by ~ (1) (2) On the marginal distributions of the latent roots of the multivariate beta mattix* q,n ~ m. The latent roots £1 > • • • > £m > 0 of the multivariate beta matrix B = S(S+T)-l are well known to have the joint density function
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信