半线性双曲系统的数值边界控制

IF 1 4区 数学 Q1 MATHEMATICS
Stephan Gerster, F. Nagel, Aleksey Sikstel, G. Visconti
{"title":"半线性双曲系统的数值边界控制","authors":"Stephan Gerster, F. Nagel, Aleksey Sikstel, G. Visconti","doi":"10.3934/mcrf.2022040","DOIUrl":null,"url":null,"abstract":"This work is devoted to the design of boundary controls of physical systems that are described by semilinear hyperbolic balance laws. A computational framework is presented that yields sufficient conditions for a boundary control to steer the system towards a desired state. The presented approach is based on a Lyapunov stability analysis and a CWENO-type reconstruction.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"28 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical boundary control for semilinear hyperbolic systems\",\"authors\":\"Stephan Gerster, F. Nagel, Aleksey Sikstel, G. Visconti\",\"doi\":\"10.3934/mcrf.2022040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to the design of boundary controls of physical systems that are described by semilinear hyperbolic balance laws. A computational framework is presented that yields sufficient conditions for a boundary control to steer the system towards a desired state. The presented approach is based on a Lyapunov stability analysis and a CWENO-type reconstruction.\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2022040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作致力于设计由半线性双曲平衡定律描述的物理系统的边界控制。提出了一个计算框架,该框架为边界控制提供了足够的条件,以使系统转向所需的状态。该方法基于Lyapunov稳定性分析和cweno型重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical boundary control for semilinear hyperbolic systems
This work is devoted to the design of boundary controls of physical systems that are described by semilinear hyperbolic balance laws. A computational framework is presented that yields sufficient conditions for a boundary control to steer the system towards a desired state. The presented approach is based on a Lyapunov stability analysis and a CWENO-type reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Control and Related Fields
Mathematical Control and Related Fields MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
8.30%
发文量
67
期刊介绍: MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信