带状态的二维矢量加法系统的可达性问题

Michael Blondin, Matthias Englert, A. Finkel, Stefan Göller, C. Haase, R. Lazic, P. McKenzie, Patrick Totzke
{"title":"带状态的二维矢量加法系统的可达性问题","authors":"Michael Blondin, Matthias Englert, A. Finkel, Stefan Göller, C. Haase, R. Lazic, P. McKenzie, Patrick Totzke","doi":"10.1145/3464794","DOIUrl":null,"url":null,"abstract":"We prove that the reachability problem for two-dimensional vector addition systems with states is NL-complete or PSPACE-complete, depending on whether the numbers in the input are encoded in unary or binary. As a key underlying technical result, we show that, if a configuration is reachable, then there exists a witnessing path whose sequence of transitions is contained in a bounded language defined by a regular expression of pseudo-polynomially bounded length. This, in turn, enables us to prove that the lengths of minimal reachability witnesses are pseudo-polynomially bounded.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"97 1","pages":"1 - 43"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The Reachability Problem for Two-Dimensional Vector Addition Systems with States\",\"authors\":\"Michael Blondin, Matthias Englert, A. Finkel, Stefan Göller, C. Haase, R. Lazic, P. McKenzie, Patrick Totzke\",\"doi\":\"10.1145/3464794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the reachability problem for two-dimensional vector addition systems with states is NL-complete or PSPACE-complete, depending on whether the numbers in the input are encoded in unary or binary. As a key underlying technical result, we show that, if a configuration is reachable, then there exists a witnessing path whose sequence of transitions is contained in a bounded language defined by a regular expression of pseudo-polynomially bounded length. This, in turn, enables us to prove that the lengths of minimal reachability witnesses are pseudo-polynomially bounded.\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":\"97 1\",\"pages\":\"1 - 43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3464794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3464794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们证明了具有状态的二维矢量加法系统的可达性问题是nl完全或pspace完全的,这取决于输入中的数字是用一元还是二进制编码的。作为一个关键的基础技术结果,我们表明,如果一个配置是可达的,那么存在一个见证路径,其转换序列包含在由伪多项式有界长度的正则表达式定义的有界语言中。这反过来又使我们能够证明最小可达性见证的长度是伪多项式有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Reachability Problem for Two-Dimensional Vector Addition Systems with States
We prove that the reachability problem for two-dimensional vector addition systems with states is NL-complete or PSPACE-complete, depending on whether the numbers in the input are encoded in unary or binary. As a key underlying technical result, we show that, if a configuration is reachable, then there exists a witnessing path whose sequence of transitions is contained in a bounded language defined by a regular expression of pseudo-polynomially bounded length. This, in turn, enables us to prove that the lengths of minimal reachability witnesses are pseudo-polynomially bounded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信