基于非平稳样本的图形模型选择的样本复杂度

Nguyen Tran, A. Jung
{"title":"基于非平稳样本的图形模型选择的样本复杂度","authors":"Nguyen Tran, A. Jung","doi":"10.1109/ICASSP.2018.8462689","DOIUrl":null,"url":null,"abstract":"We characterize the sample size required for accurate graphical model selection from non-stationary samples. The observed samples are modeled as a zero-mean Gaussian random process whose samples are uncorrelated but have different covariance matrices. This includes the case where observations form stationary or underspread processes. We derive a sufficient condition on the required sample size by analyzing a simple sparse neighborhood regression method.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"479 1","pages":"6314-6317"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Sample Complexity of Graphical Model Selection from Non-Stationary Samples\",\"authors\":\"Nguyen Tran, A. Jung\",\"doi\":\"10.1109/ICASSP.2018.8462689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the sample size required for accurate graphical model selection from non-stationary samples. The observed samples are modeled as a zero-mean Gaussian random process whose samples are uncorrelated but have different covariance matrices. This includes the case where observations form stationary or underspread processes. We derive a sufficient condition on the required sample size by analyzing a simple sparse neighborhood regression method.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"479 1\",\"pages\":\"6314-6317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们描述了从非平稳样本中精确选择图形模型所需的样本量。观察到的样本被建模为零均值高斯随机过程,其样本不相关,但具有不同的协方差矩阵。这包括观测形成平稳过程或欠扩散过程的情况。通过分析一种简单的稀疏邻域回归方法,得到了所需样本量的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Sample Complexity of Graphical Model Selection from Non-Stationary Samples
We characterize the sample size required for accurate graphical model selection from non-stationary samples. The observed samples are modeled as a zero-mean Gaussian random process whose samples are uncorrelated but have different covariance matrices. This includes the case where observations form stationary or underspread processes. We derive a sufficient condition on the required sample size by analyzing a simple sparse neighborhood regression method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信