{"title":"基于非平稳样本的图形模型选择的样本复杂度","authors":"Nguyen Tran, A. Jung","doi":"10.1109/ICASSP.2018.8462689","DOIUrl":null,"url":null,"abstract":"We characterize the sample size required for accurate graphical model selection from non-stationary samples. The observed samples are modeled as a zero-mean Gaussian random process whose samples are uncorrelated but have different covariance matrices. This includes the case where observations form stationary or underspread processes. We derive a sufficient condition on the required sample size by analyzing a simple sparse neighborhood regression method.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"479 1","pages":"6314-6317"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Sample Complexity of Graphical Model Selection from Non-Stationary Samples\",\"authors\":\"Nguyen Tran, A. Jung\",\"doi\":\"10.1109/ICASSP.2018.8462689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the sample size required for accurate graphical model selection from non-stationary samples. The observed samples are modeled as a zero-mean Gaussian random process whose samples are uncorrelated but have different covariance matrices. This includes the case where observations form stationary or underspread processes. We derive a sufficient condition on the required sample size by analyzing a simple sparse neighborhood regression method.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"479 1\",\"pages\":\"6314-6317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Sample Complexity of Graphical Model Selection from Non-Stationary Samples
We characterize the sample size required for accurate graphical model selection from non-stationary samples. The observed samples are modeled as a zero-mean Gaussian random process whose samples are uncorrelated but have different covariance matrices. This includes the case where observations form stationary or underspread processes. We derive a sufficient condition on the required sample size by analyzing a simple sparse neighborhood regression method.