卫星植被参数空间分辨率对生物源性挥发性有机化合物(VOC)排放模拟的影响

Carlos Silveira, O. Tchepel
{"title":"卫星植被参数空间分辨率对生物源性挥发性有机化合物(VOC)排放模拟的影响","authors":"Carlos Silveira, O. Tchepel","doi":"10.2478/s13533-012-0166-z","DOIUrl":null,"url":null,"abstract":"Vegetation is a natural source of Volatile Organic Compounds (VOC) that plays an important role in atmospheric chemistry. The main objective of the current study is to implement a model to quantify process-based VOC emissions from plants that focuses on the relationship between the sensitivity of VOC emission estimates to spatial resolution data, based on scientific knowledge and vegetation dynamics derived from satellite observations. The Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were elected to examine this issue using different resolutions of satellite-derived products: 22m from the DEIMOS-1 satellite, and 250m and 1000m provided by MODIS. The study is focused on an area of 80×80km2 in Portugal for 2011. Detailed land cover and meteorological data are also included in the emission quantification algorithm. The primary outcomes were determined using a multi-scale analysis showing spatial and temporal variations in the vegetation parameters and modeling results. The results confirm that the emissions model is highly sensitive to the spatial resolution of the satellite-derived data, resulting in about a 30% difference in total isoprene emissions for the study area.","PeriodicalId":49092,"journal":{"name":"Central European Journal of Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of the spatial resolution of satellite-derived vegetation parameters on the biogenic Volatile Organic Compounds (VOC) emission modeling\",\"authors\":\"Carlos Silveira, O. Tchepel\",\"doi\":\"10.2478/s13533-012-0166-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vegetation is a natural source of Volatile Organic Compounds (VOC) that plays an important role in atmospheric chemistry. The main objective of the current study is to implement a model to quantify process-based VOC emissions from plants that focuses on the relationship between the sensitivity of VOC emission estimates to spatial resolution data, based on scientific knowledge and vegetation dynamics derived from satellite observations. The Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were elected to examine this issue using different resolutions of satellite-derived products: 22m from the DEIMOS-1 satellite, and 250m and 1000m provided by MODIS. The study is focused on an area of 80×80km2 in Portugal for 2011. Detailed land cover and meteorological data are also included in the emission quantification algorithm. The primary outcomes were determined using a multi-scale analysis showing spatial and temporal variations in the vegetation parameters and modeling results. The results confirm that the emissions model is highly sensitive to the spatial resolution of the satellite-derived data, resulting in about a 30% difference in total isoprene emissions for the study area.\",\"PeriodicalId\":49092,\"journal\":{\"name\":\"Central European Journal of Geosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s13533-012-0166-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s13533-012-0166-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

植被是挥发性有机化合物(VOC)的天然来源,在大气化学中起着重要作用。当前研究的主要目标是实施一个模型来量化基于过程的植物VOC排放,该模型侧重于VOC排放估计对空间分辨率数据的敏感性之间的关系,该模型基于科学知识和卫星观测得出的植被动态。选择归一化植被指数(NDVI)和叶面积指数(LAI)来研究这一问题,使用不同分辨率的卫星衍生产品:来自DEIMOS-1卫星的22m,以及MODIS提供的250m和1000m。这项研究的重点是2011年葡萄牙80×80km2地区。详细的土地覆盖和气象数据也包括在排放量化算法中。主要结果是通过多尺度分析确定的,该分析显示了植被参数和模型结果的时空变化。结果证实,排放模型对卫星数据的空间分辨率高度敏感,导致研究区域的异戊二烯总排放量相差约30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of the spatial resolution of satellite-derived vegetation parameters on the biogenic Volatile Organic Compounds (VOC) emission modeling
Vegetation is a natural source of Volatile Organic Compounds (VOC) that plays an important role in atmospheric chemistry. The main objective of the current study is to implement a model to quantify process-based VOC emissions from plants that focuses on the relationship between the sensitivity of VOC emission estimates to spatial resolution data, based on scientific knowledge and vegetation dynamics derived from satellite observations. The Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) were elected to examine this issue using different resolutions of satellite-derived products: 22m from the DEIMOS-1 satellite, and 250m and 1000m provided by MODIS. The study is focused on an area of 80×80km2 in Portugal for 2011. Detailed land cover and meteorological data are also included in the emission quantification algorithm. The primary outcomes were determined using a multi-scale analysis showing spatial and temporal variations in the vegetation parameters and modeling results. The results confirm that the emissions model is highly sensitive to the spatial resolution of the satellite-derived data, resulting in about a 30% difference in total isoprene emissions for the study area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Central European Journal of Geosciences
Central European Journal of Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信