估计子图生成模型以理解大型网络的形成

L. Bogaardt, Frank W. Takes
{"title":"估计子图生成模型以理解大型网络的形成","authors":"L. Bogaardt, Frank W. Takes","doi":"10.1109/eScience.2018.00106","DOIUrl":null,"url":null,"abstract":"Recently, a new network formation model was proposed: SUGM. Our research looks into a method to estimate the parameters of this model based on the subgraph census.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"70 1","pages":"375-376"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Subgraph Generation Models to Understand Large Network Formation\",\"authors\":\"L. Bogaardt, Frank W. Takes\",\"doi\":\"10.1109/eScience.2018.00106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a new network formation model was proposed: SUGM. Our research looks into a method to estimate the parameters of this model based on the subgraph census.\",\"PeriodicalId\":6476,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"volume\":\"70 1\",\"pages\":\"375-376\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2018.00106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,提出了一种新的网络形成模型:SUGM。本文研究了一种基于子图普查的模型参数估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Subgraph Generation Models to Understand Large Network Formation
Recently, a new network formation model was proposed: SUGM. Our research looks into a method to estimate the parameters of this model based on the subgraph census.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信