{"title":"基于集成学习模型的家庭粮食安全状况预测","authors":"Mersha Nigus, H.L Shashirekh","doi":"10.2174/2210327913666221209143445","DOIUrl":null,"url":null,"abstract":"\n\nThis research uses the Ethiopian HICE survey dataset. Predicting food insecurity is critical in presenting the household's situation to the appropriate agencies that take preventative and intervention measures.\n\n\n\nThis research paper's primary goal is to predict households' food security status using ensemble learning models.\n\n\n\nWe use five base classifiers and a voting strategy for ensemble classification to enhance the performance of different base classifiers. Backward feature elimination and hard and soft voting-based ensemble learning are used to evaluate household food security. The training set for the basic classifiers is composed of the features that have been selected. Each ML classifier makes its prediction about the class label with the help of an ensemble learning method. For making decisions, hard voting uses a simple majority, whereas soft vote employs a weighted probability. To determine the final prediction. Ethiopian household income, consumption, and expenditure dataset are used to test the proposed ensemble learning approach. \nThe backward feature elimination approach improved the model's performance by removing irrelevant and redundant features. Random forest, gradient boosting, multi-layer perceptron, K-nearest Neighbor, and Extra Tree classifiers were used to predict the family's level of food security. Finally, the authors compare the accuracy of ensemble and base classifiers.\n\n\n\nThe experiment result shows that the RF classifier surpasses the other base and ensemble classifiers and scored 99.98% accuracy. Because a Random forest classifier is an ensemble learning classifier that uses several decision trees, the final prediction is computed based on the majority vote of the several trees. The comparison result of hard and soft voting reveals that soft voting outperforms hard voting before and after feature selection with accuracies of 99.79% and 99.77%, respectively.\n\n\n\nBased on the result obtained, ensemble learning plays a significant role in predicting household food security status and implementing hard and soft voting. The RF classifier surpasses the other base and ensemble classifiers with an accuracy of 99.98%. From ensemble methods, soft voting surpasses hard voting with an accuracy score of 99.79%.\n","PeriodicalId":37686,"journal":{"name":"International Journal of Sensors, Wireless Communications and Control","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Household Food Security Status Using Ensemble Learning Models\",\"authors\":\"Mersha Nigus, H.L Shashirekh\",\"doi\":\"10.2174/2210327913666221209143445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThis research uses the Ethiopian HICE survey dataset. Predicting food insecurity is critical in presenting the household's situation to the appropriate agencies that take preventative and intervention measures.\\n\\n\\n\\nThis research paper's primary goal is to predict households' food security status using ensemble learning models.\\n\\n\\n\\nWe use five base classifiers and a voting strategy for ensemble classification to enhance the performance of different base classifiers. Backward feature elimination and hard and soft voting-based ensemble learning are used to evaluate household food security. The training set for the basic classifiers is composed of the features that have been selected. Each ML classifier makes its prediction about the class label with the help of an ensemble learning method. For making decisions, hard voting uses a simple majority, whereas soft vote employs a weighted probability. To determine the final prediction. Ethiopian household income, consumption, and expenditure dataset are used to test the proposed ensemble learning approach. \\nThe backward feature elimination approach improved the model's performance by removing irrelevant and redundant features. Random forest, gradient boosting, multi-layer perceptron, K-nearest Neighbor, and Extra Tree classifiers were used to predict the family's level of food security. Finally, the authors compare the accuracy of ensemble and base classifiers.\\n\\n\\n\\nThe experiment result shows that the RF classifier surpasses the other base and ensemble classifiers and scored 99.98% accuracy. Because a Random forest classifier is an ensemble learning classifier that uses several decision trees, the final prediction is computed based on the majority vote of the several trees. The comparison result of hard and soft voting reveals that soft voting outperforms hard voting before and after feature selection with accuracies of 99.79% and 99.77%, respectively.\\n\\n\\n\\nBased on the result obtained, ensemble learning plays a significant role in predicting household food security status and implementing hard and soft voting. The RF classifier surpasses the other base and ensemble classifiers with an accuracy of 99.98%. From ensemble methods, soft voting surpasses hard voting with an accuracy score of 99.79%.\\n\",\"PeriodicalId\":37686,\"journal\":{\"name\":\"International Journal of Sensors, Wireless Communications and Control\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sensors, Wireless Communications and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210327913666221209143445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sensors, Wireless Communications and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210327913666221209143445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Prediction of Household Food Security Status Using Ensemble Learning Models
This research uses the Ethiopian HICE survey dataset. Predicting food insecurity is critical in presenting the household's situation to the appropriate agencies that take preventative and intervention measures.
This research paper's primary goal is to predict households' food security status using ensemble learning models.
We use five base classifiers and a voting strategy for ensemble classification to enhance the performance of different base classifiers. Backward feature elimination and hard and soft voting-based ensemble learning are used to evaluate household food security. The training set for the basic classifiers is composed of the features that have been selected. Each ML classifier makes its prediction about the class label with the help of an ensemble learning method. For making decisions, hard voting uses a simple majority, whereas soft vote employs a weighted probability. To determine the final prediction. Ethiopian household income, consumption, and expenditure dataset are used to test the proposed ensemble learning approach.
The backward feature elimination approach improved the model's performance by removing irrelevant and redundant features. Random forest, gradient boosting, multi-layer perceptron, K-nearest Neighbor, and Extra Tree classifiers were used to predict the family's level of food security. Finally, the authors compare the accuracy of ensemble and base classifiers.
The experiment result shows that the RF classifier surpasses the other base and ensemble classifiers and scored 99.98% accuracy. Because a Random forest classifier is an ensemble learning classifier that uses several decision trees, the final prediction is computed based on the majority vote of the several trees. The comparison result of hard and soft voting reveals that soft voting outperforms hard voting before and after feature selection with accuracies of 99.79% and 99.77%, respectively.
Based on the result obtained, ensemble learning plays a significant role in predicting household food security status and implementing hard and soft voting. The RF classifier surpasses the other base and ensemble classifiers with an accuracy of 99.98%. From ensemble methods, soft voting surpasses hard voting with an accuracy score of 99.79%.
期刊介绍:
International Journal of Sensors, Wireless Communications and Control publishes timely research articles, full-length/ mini reviews and communications on these three strongly related areas, with emphasis on networked control systems whose sensors are interconnected via wireless communication networks. The emergence of high speed wireless network technologies allows a cluster of devices to be linked together economically to form a distributed system. Wireless communication is playing an increasingly important role in such distributed systems. Transmitting sensor measurements and control commands over wireless links allows rapid deployment, flexible installation, fully mobile operation and prevents the cable wear and tear problem in industrial automation, healthcare and environmental assessment. Wireless networked systems has raised and continues to raise fundamental challenges in the fields of science, engineering and industrial applications, hence, more new modelling techniques, problem formulations and solutions are required.