指数五分之一确定性整数分解的对数-对数加速

David Harvey, Markus Hittmeir
{"title":"指数五分之一确定性整数分解的对数-对数加速","authors":"David Harvey, Markus Hittmeir","doi":"10.1090/mcom/3708","DOIUrl":null,"url":null,"abstract":"Building on techniques recently introduced by the second author, and further developed by the first author, we show that a positive integer $N$ may be rigorously and deterministically factored into primes in at most \\[ O\\left( \\frac{N^{1/5} \\log^{16/5} N}{(\\log\\log N)^{3/5}}\\right) \\] bit operations. This improves on the previous best known result by a factor of $(\\log \\log N)^{3/5}$.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A log-log speedup for exponent one-fifth deterministic integer factorisation\",\"authors\":\"David Harvey, Markus Hittmeir\",\"doi\":\"10.1090/mcom/3708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building on techniques recently introduced by the second author, and further developed by the first author, we show that a positive integer $N$ may be rigorously and deterministically factored into primes in at most \\\\[ O\\\\left( \\\\frac{N^{1/5} \\\\log^{16/5} N}{(\\\\log\\\\log N)^{3/5}}\\\\right) \\\\] bit operations. This improves on the previous best known result by a factor of $(\\\\log \\\\log N)^{3/5}$.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

以第二作者最近介绍的技术为基础,并由第一作者进一步发展,我们证明了一个正整数$N$可以在最多\[ O\left( \frac{N^{1/5} \log^{16/5} N}{(\log\log N)^{3/5}}\right) \]位的操作中严格和确定地分解为素数。这比之前最著名的结果提高了$(\log \log N)^{3/5}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A log-log speedup for exponent one-fifth deterministic integer factorisation
Building on techniques recently introduced by the second author, and further developed by the first author, we show that a positive integer $N$ may be rigorously and deterministically factored into primes in at most \[ O\left( \frac{N^{1/5} \log^{16/5} N}{(\log\log N)^{3/5}}\right) \] bit operations. This improves on the previous best known result by a factor of $(\log \log N)^{3/5}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信