高温颗粒接收器气力输送固体的技术评价

P. Guo, Quyen H. Ly, W. Saw, K. Lim, P. Ashman, G. Nathan
{"title":"高温颗粒接收器气力输送固体的技术评价","authors":"P. Guo, Quyen H. Ly, W. Saw, K. Lim, P. Ashman, G. Nathan","doi":"10.1063/1.5117537","DOIUrl":null,"url":null,"abstract":"A technical assessment of pneumatic conveying of solids at various operating temperatures for a high temperature solar particle receiver is reported. The power consumption of the conveying system was determined from a calculation of the pressure drop in the conveying pipes. The enthalpy loss of the transported particles was estimated from an energy balance and the heat losses through the wall. The power consumption of the pneumatic conveying system was found to decrease significantly with an increase in conveying temperature and to be less for a dense phase conveying system that for a skip hoist conveyor, where the solid input temperature is higher than 150 °C. The equivalent threshold temperature is 400 °C for a dilute phase conveying system. Nevertheless, including the enthalpy loss of the particles caused by the increases in both mechanical energy and gas enthalpy, the dense phase conveying is more energy efficient than skip hoist if the solid input temperature is higher than 450 °C while the dilute phase conveying always consumes more energy than skip hoist, under the studied conditions.A technical assessment of pneumatic conveying of solids at various operating temperatures for a high temperature solar particle receiver is reported. The power consumption of the conveying system was determined from a calculation of the pressure drop in the conveying pipes. The enthalpy loss of the transported particles was estimated from an energy balance and the heat losses through the wall. The power consumption of the pneumatic conveying system was found to decrease significantly with an increase in conveying temperature and to be less for a dense phase conveying system that for a skip hoist conveyor, where the solid input temperature is higher than 150 °C. The equivalent threshold temperature is 400 °C for a dilute phase conveying system. Nevertheless, including the enthalpy loss of the particles caused by the increases in both mechanical energy and gas enthalpy, the dense phase conveying is more energy efficient than skip hoist if the solid input temperature is higher than 450 °C while the dilute ph...","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A technical assessment of pneumatic conveying of solids for a high temperature particle receiver\",\"authors\":\"P. Guo, Quyen H. Ly, W. Saw, K. Lim, P. Ashman, G. Nathan\",\"doi\":\"10.1063/1.5117537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technical assessment of pneumatic conveying of solids at various operating temperatures for a high temperature solar particle receiver is reported. The power consumption of the conveying system was determined from a calculation of the pressure drop in the conveying pipes. The enthalpy loss of the transported particles was estimated from an energy balance and the heat losses through the wall. The power consumption of the pneumatic conveying system was found to decrease significantly with an increase in conveying temperature and to be less for a dense phase conveying system that for a skip hoist conveyor, where the solid input temperature is higher than 150 °C. The equivalent threshold temperature is 400 °C for a dilute phase conveying system. Nevertheless, including the enthalpy loss of the particles caused by the increases in both mechanical energy and gas enthalpy, the dense phase conveying is more energy efficient than skip hoist if the solid input temperature is higher than 450 °C while the dilute phase conveying always consumes more energy than skip hoist, under the studied conditions.A technical assessment of pneumatic conveying of solids at various operating temperatures for a high temperature solar particle receiver is reported. The power consumption of the conveying system was determined from a calculation of the pressure drop in the conveying pipes. The enthalpy loss of the transported particles was estimated from an energy balance and the heat losses through the wall. The power consumption of the pneumatic conveying system was found to decrease significantly with an increase in conveying temperature and to be less for a dense phase conveying system that for a skip hoist conveyor, where the solid input temperature is higher than 150 °C. The equivalent threshold temperature is 400 °C for a dilute phase conveying system. Nevertheless, including the enthalpy loss of the particles caused by the increases in both mechanical energy and gas enthalpy, the dense phase conveying is more energy efficient than skip hoist if the solid input temperature is higher than 450 °C while the dilute ph...\",\"PeriodicalId\":21790,\"journal\":{\"name\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5117537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文报道了高温太阳能颗粒接收器在不同工作温度下的固体气流输送技术评估。通过计算输送管道的压降,确定了输送系统的功率消耗。通过能量平衡和通过壁面的热损失估算了输运粒子的焓损失。气动输送系统的功率消耗随着输送温度的升高而显著降低,对于固体输入温度高于150°C的箕斗提升输送机的密相输送系统来说,功率消耗更少。稀相输送系统的等效阈值温度为400℃。然而,考虑到颗粒的机械能和气体焓的增加所造成的焓损失,在研究条件下,当固体输入温度高于450℃时,密相输送比箕斗提升机更节能,而稀相输送总是比箕斗提升机消耗更多的能量。本文报道了高温太阳能颗粒接收器在不同工作温度下的固体气流输送技术评估。通过计算输送管道的压降,确定了输送系统的功率消耗。通过能量平衡和通过壁面的热损失估算了输运粒子的焓损失。气动输送系统的功率消耗随着输送温度的升高而显著降低,对于固体输入温度高于150°C的箕斗提升输送机的密相输送系统来说,功率消耗更少。稀相输送系统的等效阈值温度为400℃。然而,考虑到颗粒的机械能和气体焓的增加所造成的焓损失,当固体输入温度高于450℃,稀ph值高于450℃时,密相输送比箕斗提升机更节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A technical assessment of pneumatic conveying of solids for a high temperature particle receiver
A technical assessment of pneumatic conveying of solids at various operating temperatures for a high temperature solar particle receiver is reported. The power consumption of the conveying system was determined from a calculation of the pressure drop in the conveying pipes. The enthalpy loss of the transported particles was estimated from an energy balance and the heat losses through the wall. The power consumption of the pneumatic conveying system was found to decrease significantly with an increase in conveying temperature and to be less for a dense phase conveying system that for a skip hoist conveyor, where the solid input temperature is higher than 150 °C. The equivalent threshold temperature is 400 °C for a dilute phase conveying system. Nevertheless, including the enthalpy loss of the particles caused by the increases in both mechanical energy and gas enthalpy, the dense phase conveying is more energy efficient than skip hoist if the solid input temperature is higher than 450 °C while the dilute phase conveying always consumes more energy than skip hoist, under the studied conditions.A technical assessment of pneumatic conveying of solids at various operating temperatures for a high temperature solar particle receiver is reported. The power consumption of the conveying system was determined from a calculation of the pressure drop in the conveying pipes. The enthalpy loss of the transported particles was estimated from an energy balance and the heat losses through the wall. The power consumption of the pneumatic conveying system was found to decrease significantly with an increase in conveying temperature and to be less for a dense phase conveying system that for a skip hoist conveyor, where the solid input temperature is higher than 150 °C. The equivalent threshold temperature is 400 °C for a dilute phase conveying system. Nevertheless, including the enthalpy loss of the particles caused by the increases in both mechanical energy and gas enthalpy, the dense phase conveying is more energy efficient than skip hoist if the solid input temperature is higher than 450 °C while the dilute ph...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信