在一个新的扭对上

L. Fuchs, Sang Bum Lee
{"title":"在一个新的扭对上","authors":"L. Fuchs, Sang Bum Lee","doi":"10.4171/rsmup/61","DOIUrl":null,"url":null,"abstract":"In cotorsion theories, the cotorsion pairs (SF ,MC) of strongly flat and Matlis-cotorsion modules, and (F , EC) of flat and Enochs-cotorsion modules play important roles. We introduce a new cotorsion pair that in general lies properly between these two (in the partial order generally accepted for cotorsion pairs), and discuss its properties over commutative rings. In particular, we characterize the commutative rings over which this is a perfect cotorsion pair. Our results may shed more light on the relation between the two old cotorsion pairs.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"42 1","pages":"129-143"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a new cotorsion pair\",\"authors\":\"L. Fuchs, Sang Bum Lee\",\"doi\":\"10.4171/rsmup/61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In cotorsion theories, the cotorsion pairs (SF ,MC) of strongly flat and Matlis-cotorsion modules, and (F , EC) of flat and Enochs-cotorsion modules play important roles. We introduce a new cotorsion pair that in general lies properly between these two (in the partial order generally accepted for cotorsion pairs), and discuss its properties over commutative rings. In particular, we characterize the commutative rings over which this is a perfect cotorsion pair. Our results may shed more light on the relation between the two old cotorsion pairs.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"42 1\",\"pages\":\"129-143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在扭转理论中,强平模和matlis -扭转模的扭转对(SF,MC)和平模和enochs -扭转模的扭转对(F, EC)起着重要的作用。我们引入了一种新的扭对,它一般处于这两种扭对之间(在通常接受的偏序中),并讨论了它在交换环上的性质。特别地,我们刻画了这是一个完全扭转对的交换环。我们的结果可能会对两种老扭对之间的关系提供更多的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a new cotorsion pair
In cotorsion theories, the cotorsion pairs (SF ,MC) of strongly flat and Matlis-cotorsion modules, and (F , EC) of flat and Enochs-cotorsion modules play important roles. We introduce a new cotorsion pair that in general lies properly between these two (in the partial order generally accepted for cotorsion pairs), and discuss its properties over commutative rings. In particular, we characterize the commutative rings over which this is a perfect cotorsion pair. Our results may shed more light on the relation between the two old cotorsion pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信