Hui Zeng, Vernon M Chinchilli, Nasrollah Ghahramani
{"title":"利用中介比例危险回归模型进行因果推断。","authors":"Hui Zeng, Vernon M Chinchilli, Nasrollah Ghahramani","doi":"10.1080/03610918.2021.2014887","DOIUrl":null,"url":null,"abstract":"<p><p>The natural direct and indirect effects in causal mediation analysis with survival data having one mediator is addressed by VanderWeele (2011) [1]. He derived an approach for (1) an accelerated failure time regression model in general cases and (2) a proportional hazards regression model when the time-to-event outcome is rare. If the outcome is not rare, then VanderWeele (2011) [1] did not derive a simple closed-form expression for the log-natural direct and log-natural indirect effects for the proportional hazards regression model because the baseline cumulative hazard function does not approach zero. We develop two approaches to extend VanderWeele's approach, in which the assumption of a rare outcome is not required. We obtain the natural direct and indirect effects for specific time points through numerical integration after we calculate the cumulative baseline hazard by (1) applying the Breslow method in the Cox proportional hazards regression model to estimate the unspecified cumulative baseline hazard; (2) assuming a piecewise constant baseline hazard model, yielding a parametric model, to estimate the baseline hazard and cumulative baseline hazard. We conduct simulation studies to compare our two approaches with other methods and illustrate our two approaches by applying them to data from the ASsessment, Serial Evaluation, and Subsequent Sequelae in Acute Kidney Injury (ASSESS-AKI) Consortium.</p>","PeriodicalId":48635,"journal":{"name":"Frontiers of Mechanical Engineering","volume":"11 1","pages":"203-218"},"PeriodicalIF":4.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Causal inference with a mediated proportional hazards regression model.\",\"authors\":\"Hui Zeng, Vernon M Chinchilli, Nasrollah Ghahramani\",\"doi\":\"10.1080/03610918.2021.2014887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The natural direct and indirect effects in causal mediation analysis with survival data having one mediator is addressed by VanderWeele (2011) [1]. He derived an approach for (1) an accelerated failure time regression model in general cases and (2) a proportional hazards regression model when the time-to-event outcome is rare. If the outcome is not rare, then VanderWeele (2011) [1] did not derive a simple closed-form expression for the log-natural direct and log-natural indirect effects for the proportional hazards regression model because the baseline cumulative hazard function does not approach zero. We develop two approaches to extend VanderWeele's approach, in which the assumption of a rare outcome is not required. We obtain the natural direct and indirect effects for specific time points through numerical integration after we calculate the cumulative baseline hazard by (1) applying the Breslow method in the Cox proportional hazards regression model to estimate the unspecified cumulative baseline hazard; (2) assuming a piecewise constant baseline hazard model, yielding a parametric model, to estimate the baseline hazard and cumulative baseline hazard. We conduct simulation studies to compare our two approaches with other methods and illustrate our two approaches by applying them to data from the ASsessment, Serial Evaluation, and Subsequent Sequelae in Acute Kidney Injury (ASSESS-AKI) Consortium.</p>\",\"PeriodicalId\":48635,\"journal\":{\"name\":\"Frontiers of Mechanical Engineering\",\"volume\":\"11 1\",\"pages\":\"203-218\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Mechanical Engineering\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03610918.2021.2014887\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Mechanical Engineering","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03610918.2021.2014887","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Causal inference with a mediated proportional hazards regression model.
The natural direct and indirect effects in causal mediation analysis with survival data having one mediator is addressed by VanderWeele (2011) [1]. He derived an approach for (1) an accelerated failure time regression model in general cases and (2) a proportional hazards regression model when the time-to-event outcome is rare. If the outcome is not rare, then VanderWeele (2011) [1] did not derive a simple closed-form expression for the log-natural direct and log-natural indirect effects for the proportional hazards regression model because the baseline cumulative hazard function does not approach zero. We develop two approaches to extend VanderWeele's approach, in which the assumption of a rare outcome is not required. We obtain the natural direct and indirect effects for specific time points through numerical integration after we calculate the cumulative baseline hazard by (1) applying the Breslow method in the Cox proportional hazards regression model to estimate the unspecified cumulative baseline hazard; (2) assuming a piecewise constant baseline hazard model, yielding a parametric model, to estimate the baseline hazard and cumulative baseline hazard. We conduct simulation studies to compare our two approaches with other methods and illustrate our two approaches by applying them to data from the ASsessment, Serial Evaluation, and Subsequent Sequelae in Acute Kidney Injury (ASSESS-AKI) Consortium.
期刊介绍:
Frontiers of Mechanical Engineering is an international peer-reviewed academic journal sponsored by the Ministry of Education of China. The journal seeks to provide a forum for a broad blend of high-quality academic papers in order to promote rapid communication and exchange between researchers, scientists, and engineers in the field of mechanical engineering. The journal publishes original research articles, review articles and feature articles.