S. K. Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew K. Miller, Michael Bailey
{"title":"测量以太坊网络节点","authors":"S. K. Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew K. Miller, Michael Bailey","doi":"10.1145/3278532.3278542","DOIUrl":null,"url":null,"abstract":"Ethereum, the second-largest cryptocurrency valued at a peak of $138 billion in 2018, is a decentralized, Turing-complete computing platform. Although the stability and security of Ethereum---and blockchain systems in general---have been widely-studied, most analysis has focused on application level features of these systems such as cryptographic mining challenges, smart contract semantics, or block mining operators. Little attention has been paid to the underlying peer-to-peer (P2P) networks that are responsible for information propagation and that enable blockchain consensus. In this work, we develop NodeFinder to measure this previously opaque network at scale and illuminate the properties of its nodes. We analyze the Ethereum network from two vantage points: a three-month long view of nodes on the P2P network, and a single day snapshot of the Ethereum Mainnet peers. We uncover a noisy DEVp2p ecosystem in which fewer than half of all nodes contribute to the Ethereum Mainnet. Through a comparison with other previously studied P2P networks including BitTorrent, Gnutella, and Bitcoin, we find that Ethereum differs in both network size and geographical distribution.","PeriodicalId":20640,"journal":{"name":"Proceedings of the Internet Measurement Conference 2018","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"124","resultStr":"{\"title\":\"Measuring Ethereum Network Peers\",\"authors\":\"S. K. Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew K. Miller, Michael Bailey\",\"doi\":\"10.1145/3278532.3278542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ethereum, the second-largest cryptocurrency valued at a peak of $138 billion in 2018, is a decentralized, Turing-complete computing platform. Although the stability and security of Ethereum---and blockchain systems in general---have been widely-studied, most analysis has focused on application level features of these systems such as cryptographic mining challenges, smart contract semantics, or block mining operators. Little attention has been paid to the underlying peer-to-peer (P2P) networks that are responsible for information propagation and that enable blockchain consensus. In this work, we develop NodeFinder to measure this previously opaque network at scale and illuminate the properties of its nodes. We analyze the Ethereum network from two vantage points: a three-month long view of nodes on the P2P network, and a single day snapshot of the Ethereum Mainnet peers. We uncover a noisy DEVp2p ecosystem in which fewer than half of all nodes contribute to the Ethereum Mainnet. Through a comparison with other previously studied P2P networks including BitTorrent, Gnutella, and Bitcoin, we find that Ethereum differs in both network size and geographical distribution.\",\"PeriodicalId\":20640,\"journal\":{\"name\":\"Proceedings of the Internet Measurement Conference 2018\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"124\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Internet Measurement Conference 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3278532.3278542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Internet Measurement Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3278532.3278542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ethereum, the second-largest cryptocurrency valued at a peak of $138 billion in 2018, is a decentralized, Turing-complete computing platform. Although the stability and security of Ethereum---and blockchain systems in general---have been widely-studied, most analysis has focused on application level features of these systems such as cryptographic mining challenges, smart contract semantics, or block mining operators. Little attention has been paid to the underlying peer-to-peer (P2P) networks that are responsible for information propagation and that enable blockchain consensus. In this work, we develop NodeFinder to measure this previously opaque network at scale and illuminate the properties of its nodes. We analyze the Ethereum network from two vantage points: a three-month long view of nodes on the P2P network, and a single day snapshot of the Ethereum Mainnet peers. We uncover a noisy DEVp2p ecosystem in which fewer than half of all nodes contribute to the Ethereum Mainnet. Through a comparison with other previously studied P2P networks including BitTorrent, Gnutella, and Bitcoin, we find that Ethereum differs in both network size and geographical distribution.