一种将判别模型与生成模型相结合的新型深度学习方法

Sangwook Kim, Minho Lee, Jixiang Shen
{"title":"一种将判别模型与生成模型相结合的新型深度学习方法","authors":"Sangwook Kim, Minho Lee, Jixiang Shen","doi":"10.1109/IJCNN.2015.7280589","DOIUrl":null,"url":null,"abstract":"Deep learning methods allow a classifier to learn features automatically through multiple layers of training. In a deep learning process, low-level features are abstracted into high-level features. In this paper, we propose a new probabilistic deep learning method that combines a discriminative model, namely, Support Vector Machine (SVM), with a generative model, namely, Gaussian Mixture Model (GMM). Combining the SVM with the GMM, we can represent a new input feature for deeper layer training of uncertain data in current layer construction. Bayesian rule is used to re-represent the output data of the previous layer of the SVM with GMM to serve as the input data for the next deep layer. As a result, deep features are reliably extracted without additional feature extraction efforts, using multiple layers of the SVM with GMM. Experimental results show that the proposed deep structure model allows for an easier classification of the uncertain data through multiple-layer training and it gives more accurate results.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"55 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel deep learning by combining discriminative model with generative model\",\"authors\":\"Sangwook Kim, Minho Lee, Jixiang Shen\",\"doi\":\"10.1109/IJCNN.2015.7280589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning methods allow a classifier to learn features automatically through multiple layers of training. In a deep learning process, low-level features are abstracted into high-level features. In this paper, we propose a new probabilistic deep learning method that combines a discriminative model, namely, Support Vector Machine (SVM), with a generative model, namely, Gaussian Mixture Model (GMM). Combining the SVM with the GMM, we can represent a new input feature for deeper layer training of uncertain data in current layer construction. Bayesian rule is used to re-represent the output data of the previous layer of the SVM with GMM to serve as the input data for the next deep layer. As a result, deep features are reliably extracted without additional feature extraction efforts, using multiple layers of the SVM with GMM. Experimental results show that the proposed deep structure model allows for an easier classification of the uncertain data through multiple-layer training and it gives more accurate results.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"55 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

深度学习方法允许分类器通过多层训练自动学习特征。在深度学习过程中,低级特征被抽象成高级特征。在本文中,我们提出了一种新的概率深度学习方法,该方法结合了判别模型(即支持向量机(SVM))和生成模型(即高斯混合模型(GMM))。将支持向量机与GMM相结合,我们可以在当前层构建中表示一个新的输入特征,用于不确定数据的更深层训练。使用贝叶斯规则将SVM前一层的输出数据用GMM重新表示,作为下一层的输入数据。因此,使用多层支持向量机与GMM结合,无需额外的特征提取工作,即可可靠地提取深度特征。实验结果表明,本文提出的深层结构模型可以通过多层训练更容易地对不确定数据进行分类,并给出更准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel deep learning by combining discriminative model with generative model
Deep learning methods allow a classifier to learn features automatically through multiple layers of training. In a deep learning process, low-level features are abstracted into high-level features. In this paper, we propose a new probabilistic deep learning method that combines a discriminative model, namely, Support Vector Machine (SVM), with a generative model, namely, Gaussian Mixture Model (GMM). Combining the SVM with the GMM, we can represent a new input feature for deeper layer training of uncertain data in current layer construction. Bayesian rule is used to re-represent the output data of the previous layer of the SVM with GMM to serve as the input data for the next deep layer. As a result, deep features are reliably extracted without additional feature extraction efforts, using multiple layers of the SVM with GMM. Experimental results show that the proposed deep structure model allows for an easier classification of the uncertain data through multiple-layer training and it gives more accurate results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信