内容生成的约束惊喜搜索

Daniele Gravina, Antonios Liapis, Georgios N. Yannakakis
{"title":"内容生成的约束惊喜搜索","authors":"Daniele Gravina, Antonios Liapis, Georgios N. Yannakakis","doi":"10.1109/CIG.2016.7860408","DOIUrl":null,"url":null,"abstract":"In procedural content generation, it is often desirable to create artifacts which not only fulfill certain playability constraints but are also able to surprise the player with unexpected potential uses. This paper applies a divergent evolutionary search method based on surprise to the constrained problem of generating balanced and efficient sets of weapons for the Unreal Tournament III shooter game. The proposed constrained surprise search algorithm ensures that pairs of weapons are sufficiently balanced and effective while also rewarding unexpected uses of these weapons during game simulations with artificial agents. Results in the paper demonstrate that searching for surprise can create functionally diverse weapons which require new gameplay patterns of weapon use in the game.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"15 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Constrained surprise search for content generation\",\"authors\":\"Daniele Gravina, Antonios Liapis, Georgios N. Yannakakis\",\"doi\":\"10.1109/CIG.2016.7860408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In procedural content generation, it is often desirable to create artifacts which not only fulfill certain playability constraints but are also able to surprise the player with unexpected potential uses. This paper applies a divergent evolutionary search method based on surprise to the constrained problem of generating balanced and efficient sets of weapons for the Unreal Tournament III shooter game. The proposed constrained surprise search algorithm ensures that pairs of weapons are sufficiently balanced and effective while also rewarding unexpected uses of these weapons during game simulations with artificial agents. Results in the paper demonstrate that searching for surprise can create functionally diverse weapons which require new gameplay patterns of weapon use in the game.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"15 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2016.7860408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在程序内容生成中,我们通常希望创造出不仅能够满足某些可玩性限制,而且能够以意想不到的潜在用途给玩家带来惊喜的工件。本文将基于惊喜度的发散进化搜索方法应用于《虚幻竞技场III》射击游戏生成平衡有效武器组合的约束问题。所提出的约束突袭搜索算法确保了武器对的充分平衡和有效,同时在使用人工智能体进行游戏模拟时奖励这些武器的意外使用。本文的结果表明,寻找惊喜可以创造出功能多样化的武器,这需要在游戏中使用新的武器玩法模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constrained surprise search for content generation
In procedural content generation, it is often desirable to create artifacts which not only fulfill certain playability constraints but are also able to surprise the player with unexpected potential uses. This paper applies a divergent evolutionary search method based on surprise to the constrained problem of generating balanced and efficient sets of weapons for the Unreal Tournament III shooter game. The proposed constrained surprise search algorithm ensures that pairs of weapons are sufficiently balanced and effective while also rewarding unexpected uses of these weapons during game simulations with artificial agents. Results in the paper demonstrate that searching for surprise can create functionally diverse weapons which require new gameplay patterns of weapon use in the game.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信