非对称长队列模型II:边际概率和条件概率

C. Knessl, Haishen Yao
{"title":"非对称长队列模型II:边际概率和条件概率","authors":"C. Knessl, Haishen Yao","doi":"10.1093/AMRX/ABU002","DOIUrl":null,"url":null,"abstract":"queue, with 0 < ν < 1. We let (N1, N2) be the numbers of customers in the two parallel queues, and let p(m, n) = Prob[N1 = m, N2 = n] be the joint queue length distribution in the steady state. The two arrival rates are λ1 and λ2, the exponential server works at rate μ, and ρ1 = λ1/μ, ρ2 = λ2/μ. If N1 > N2 (N1 < N2), the server works on the first (second) queue, but if N1 = N2, the server works at rate μν on the first queue and rate μ(1 − ν)","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"22 1","pages":"1-47"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Nonsymmetric Longer Queue Model II: Marginal and Conditional Probabilities\",\"authors\":\"C. Knessl, Haishen Yao\",\"doi\":\"10.1093/AMRX/ABU002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"queue, with 0 < ν < 1. We let (N1, N2) be the numbers of customers in the two parallel queues, and let p(m, n) = Prob[N1 = m, N2 = n] be the joint queue length distribution in the steady state. The two arrival rates are λ1 and λ2, the exponential server works at rate μ, and ρ1 = λ1/μ, ρ2 = λ2/μ. If N1 > N2 (N1 < N2), the server works on the first (second) queue, but if N1 = N2, the server works at rate μν on the first queue and rate μ(1 − ν)\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"22 1\",\"pages\":\"1-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABU002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABU002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

队列,0 < ν < 1。设(N1, N2)为两个并行队列中的顾客数,设p(m, n) = Prob[N1 = m, N2 = n]为稳态下的联合队列长度分布。两个到达率分别为λ1和λ2,指数服务器的工作速率为μ, ρ1 = λ1/μ, ρ2 = λ2/μ。如果N1 > N2 (N1 < N2),服务器工作在第一(第二)队列上,如果N1 = N2,服务器工作在第一(第二)队列上,速率为μν,速率为μ(1−ν)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Nonsymmetric Longer Queue Model II: Marginal and Conditional Probabilities
queue, with 0 < ν < 1. We let (N1, N2) be the numbers of customers in the two parallel queues, and let p(m, n) = Prob[N1 = m, N2 = n] be the joint queue length distribution in the steady state. The two arrival rates are λ1 and λ2, the exponential server works at rate μ, and ρ1 = λ1/μ, ρ2 = λ2/μ. If N1 > N2 (N1 < N2), the server works on the first (second) queue, but if N1 = N2, the server works at rate μν on the first queue and rate μ(1 − ν)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信